Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2014, Volume 5, Issue 1, Pages 5–25
DOI: https://doi.org/10.4213/mvk104
(Mi mvk104)
 

This article is cited in 6 scientific papers (total in 6 papers)

Transversals in splitted Latin squares of even order

V. V. Borisenko

LLC "Certification Research Center", Moscow
Full-text PDF (242 kB) Citations (6)
References:
Abstract: We consider the splitted Latin squares, i.e. Latin squares of order $2n$ with elements from $\{0,\ldots,2n-1\}$ such that after reducing modulo $n$ we obtain $2n\times2n$-matrix consisting of four Latin squares of order $n$. The set of all transversals of splitted Latin square is described by means of $2$-balansed multisets of entries of one of Latin squares of order $n$ mentioned above. A quick algorithm of construction (after some preliminary work) the set of all transversals for any splitted Latin square of order $2n$ corresponding to an arbitrary set of four Latin squares of order $n$ is described.
Key words: Latin square, transversal, multise.
Received 22.IV.2013
Document Type: Article
UDC: 519.143
Language: Russian
Citation: V. V. Borisenko, “Transversals in splitted Latin squares of even order”, Mat. Vopr. Kriptogr., 5:1 (2014), 5–25
Citation in format AMSBIB
\Bibitem{Bor14}
\by V.~V.~Borisenko
\paper Transversals in splitted Latin squares of even order
\jour Mat. Vopr. Kriptogr.
\yr 2014
\vol 5
\issue 1
\pages 5--25
\mathnet{http://mi.mathnet.ru/mvk104}
\crossref{https://doi.org/10.4213/mvk104}
Linking options:
  • https://www.mathnet.ru/eng/mvk104
  • https://doi.org/10.4213/mvk104
  • https://www.mathnet.ru/eng/mvk/v5/i1/p5
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024