Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2002, Volume 5, Number 1, Pages 66–73 (Mi mt99)  

This article is cited in 1 scientific paper (total in 1 paper)

On Asymptotics of the Jump of Highest Derivative for a Polynomial Spline

B. S. Kindalev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (555 kB) Citations (1)
References:
Abstract: In this article, we obtain $2[n/2]+2$ terms ($[\boldsymbol{\cdot}]$ stands for the integer part) of the asymptotic expansion of the error
$$ \bigl(S^{(n)}({}\,\overline{\kern-.3mm x}_i+0)-S^{(n)}({}\,\overline{\kern-.3mm x}_i-0)\bigr)\big/h-f^{(n+1)}({}\,\overline{\kern-.3mm x}_i), $$
where $S(x)$ is a periodic spline of degree $n\ge 0$ and deficiency 1 that interpolates a periodic sufficiently smooth function $f(x)$ at the nodes $x_i$ ($i=0,\pm1,\dots$) of a uniform mesh of width $h$. The nodes of the spline are the points ${}\,\overline{\kern-.3mm x}_i=x_i+h\bigl(1+(-1)^n\bigr)/4$.
The expansion coefficients are represented explicitly in terms of the values of the Bernoulli polynomials at 0 for $n$ odd and 1/2 for $n$ even.
Key words: polynomial spline, interpolation error, asymptotic expansion.
Received: 12.03.2001
Bibliographic databases:
UDC: 519.651
Language: Russian
Citation: B. S. Kindalev, “On Asymptotics of the Jump of Highest Derivative for a Polynomial Spline”, Mat. Tr., 5:1 (2002), 66–73; Siberian Adv. Math., 12:2 (2002), 48–55
Citation in format AMSBIB
\Bibitem{Kin02}
\by B.~S.~Kindalev
\paper On Asymptotics of the~Jump of~Highest Derivative for a~Polynomial Spline
\jour Mat. Tr.
\yr 2002
\vol 5
\issue 1
\pages 66--73
\mathnet{http://mi.mathnet.ru/mt99}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918895}
\zmath{https://zbmath.org/?q=an:1134.41311}
\transl
\jour Siberian Adv. Math.
\yr 2002
\vol 12
\issue 2
\pages 48--55
Linking options:
  • https://www.mathnet.ru/eng/mt99
  • https://www.mathnet.ru/eng/mt/v5/i1/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :93
    References:31
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024