Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2003, Volume 6, Number 2, Pages 3–13 (Mi mt90)  

A Problem of L. Fejes Tóth in a Multidimensional Euclidean Space

D. V. Vasin, Yu. G. Nikonorov

Rubtsovsk Industrial Intitute, Branch of Altai State Technical University
References:
Abstract: We study L. Fejes Tóth's characteristics for convex bodies in a multidimensional Euclidean space. In particular, we prove existence of extremal convex bodies for these characteristics.
Key words: convex body, Euclidean geometry, isoperimetric problem.
Received: 14.05.2002
Bibliographic databases:
UDC: 513
Language: Russian
Citation: D. V. Vasin, Yu. G. Nikonorov, “A Problem of L. Fejes Tóth in a Multidimensional Euclidean Space”, Mat. Tr., 6:2 (2003), 3–13; Siberian Adv. Math., 14:2 (2004), 116–125
Citation in format AMSBIB
\Bibitem{VasNik03}
\by D.~V.~Vasin, Yu.~G.~Nikonorov
\paper A~Problem of L.~Fejes~T\'oth in a~Multidimensional Euclidean Space
\jour Mat. Tr.
\yr 2003
\vol 6
\issue 2
\pages 3--13
\mathnet{http://mi.mathnet.ru/mt90}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2033645}
\zmath{https://zbmath.org/?q=an:1078.52502|1049.52010}
\transl
\jour Siberian Adv. Math.
\yr 2004
\vol 14
\issue 2
\pages 116--125
Linking options:
  • https://www.mathnet.ru/eng/mt90
  • https://www.mathnet.ru/eng/mt/v6/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025