Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2003, Volume 6, Number 1, Pages 98–154 (Mi mt86)  

This article is cited in 1 scientific paper (total in 1 paper)

On Independently Partitionable Sets of Semigroup Identities

V. Yu. Popov

Ural State University
References:
Abstract: A set $\Sigma$ of first-order sentences is said to be independently partitionable if there exists a partition $\Sigma=\bigcup_{n\in\mathbb N}\Sigma_n$ such that $\mathrm{var}\Sigma\ne\mathrm{var}\Sigma\setminus\Sigma_n$ for every $n\in\mathbb N$. A set $\Sigma$ of first-order sentences is said to be finitely independently partitionable if there exists a partition $\Sigma=\bigcup_{n\in\mathbb N}\Sigma_n$ such that $\Sigma_n$ is finite and $\mathrm{var}\Sigma\ne\mathrm{var}\Sigma\setminus\Sigma_n$ for every $n\in\mathbb N$.
We construct some varieties $\mathfrak X$, $\mathfrak Y$, and $\mathfrak Z$ of semigroups such that $\mathfrak X$ has no independently partitionable basis for identities, $\mathfrak Y$ has an independently partitionable basis but has no finitely independently partitionable basis for identities, and $\mathfrak Z$ has a finitely independently partitionable basis but has no independent basis for identities. We also present varieties $\mathfrak X$ and $\mathfrak Y$ of semigroups such that $\mathfrak X\subset\mathfrak Y$, $\mathfrak X$ and $\mathfrak Y$ possess independent bases for their identities, and $\mathfrak X$ has an independently partitionable basis but has no finitely independently partitionable basis for its identities in $\mathfrak Y$; moreover, none of subvarieties of $\mathfrak Y$ covers $\mathfrak X$.
Key words: variety of semigroups, identity, independent basis.
Received: 28.11.2001
Bibliographic databases:
UDC: 512+519.4
Language: Russian
Citation: V. Yu. Popov, “On Independently Partitionable Sets of Semigroup Identities”, Mat. Tr., 6:1 (2003), 98–154; Siberian Adv. Math., 14:2 (2004), 27–78
Citation in format AMSBIB
\Bibitem{Pop03}
\by V.~Yu.~Popov
\paper On Independently Partitionable Sets of Semigroup Identities
\jour Mat. Tr.
\yr 2003
\vol 6
\issue 1
\pages 98--154
\mathnet{http://mi.mathnet.ru/mt86}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1985627}
\elib{https://elibrary.ru/item.asp?id=9530081}
\transl
\jour Siberian Adv. Math.
\yr 2004
\vol 14
\issue 2
\pages 27--78
Linking options:
  • https://www.mathnet.ru/eng/mt86
  • https://www.mathnet.ru/eng/mt/v6/i1/p98
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :114
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024