Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2003, Volume 6, Number 1, Pages 28–33 (Mi mt83)  

This article is cited in 1 scientific paper (total in 1 paper)

Projectivity of the Absolute Galois Groups of Multi-Valued Fields

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (520 kB) Citations (1)
References:
Abstract: In the article, we establish the projectivity property for the enriched Galois groups of multi-valued fields having a near Boolean family of valuation rings and satisfying the arithmetic local-global principle $\mathrm{LG}_A$. This property extends the corresponding property that was proved by the author for the case of Boolean families. As application, we give a sufficient condition for the inverse Galois problem to be solvable. This condition can be applied in particular to the wonderful extensions of the field of rational numbers.
Key words: projectivity, $\delta$-group, multi-valued field, local-global principle.
Received: 24.06.2002
Bibliographic databases:
UDC: 510.53+512.52
Language: Russian
Citation: Yu. L. Ershov, “Projectivity of the Absolute Galois Groups of Multi-Valued Fields”, Mat. Tr., 6:1 (2003), 28–33; Siberian Adv. Math., 14:1 (2004), 1–6
Citation in format AMSBIB
\Bibitem{Ers03}
\by Yu.~L.~Ershov
\paper Projectivity of the~Absolute Galois Groups of Multi-Valued Fields
\jour Mat. Tr.
\yr 2003
\vol 6
\issue 1
\pages 28--33
\mathnet{http://mi.mathnet.ru/mt83}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1985624}
\zmath{https://zbmath.org/?q=an:1077.12005}
\transl
\jour Siberian Adv. Math.
\yr 2004
\vol 14
\issue 1
\pages 1--6
Linking options:
  • https://www.mathnet.ru/eng/mt83
  • https://www.mathnet.ru/eng/mt/v6/i1/p28
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :120
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024