Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2004, Volume 7, Number 2, Pages 126–158 (Mi mt80)  

This article is cited in 2 scientific papers (total in 2 papers)

An Explicit Variational Formula for the Monodromy Group

V. V. Chueshev

Kemerovo State University
References:
Abstract: We study the monodromy groups of linearly polymorphic functions on compact Riemann surfaces of genus $g\ge 2$ in connection with standard uniformizations of these surfaces by Kleinian groups. We find necessary and sufficient conditions under which a linearly polymorphic function on a compact Riemann surface gives a standard uniformization of this surface. We study the monodromy mapping $p\colon\mathbf T_gQ\to\mathcal M$, where $\mathbf T_gQ$ is the vector bundle of holomorphic quadratic abelian differentials over the Teichmüller space of compact Riemann surfaces of genus $g$ and $\mathcal M$ is the space of monodromy groups for genus $g$. We prove that $p$ possesses the path lifting property over each space of quasiconformal deformations of the Koebe group of signature $\sigma=(h,s;i_1,\dots,i_m)$ connected with the standard uniformization of a compact Riemann surface of genus $g=|\sigma|$. Moreover, we obtain an explicit variational formula for the monodromy group of a second-order linear differential equation and the first variation for a solution to a Schwartz equation on a compact Riemann surface.
Key words: monodromy group for a linearly polymorphic function on a compact Riemann surface, standard uniformization of surfaces by Kleinian groups, monodromy mapping and an explicit variational formula for the monodromy group of a second-order linear differential equation.
Received: 20.12.2002
Bibliographic databases:
UDC: 515.17+517.545
Language: Russian
Citation: V. V. Chueshev, “An Explicit Variational Formula for the Monodromy Group”, Mat. Tr., 7:2 (2004), 126–158; Siberian Adv. Math., 15:2 (2005), 1–32
Citation in format AMSBIB
\Bibitem{Chu04}
\by V.~V.~Chueshev
\paper An~Explicit Variational Formula for the~Monodromy Group
\jour Mat. Tr.
\yr 2004
\vol 7
\issue 2
\pages 126--158
\mathnet{http://mi.mathnet.ru/mt80}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2124543}
\zmath{https://zbmath.org/?q=an:1079.30060}
\elib{https://elibrary.ru/item.asp?id=9530103}
\transl
\jour Siberian Adv. Math.
\yr 2005
\vol 15
\issue 2
\pages 1--32
Linking options:
  • https://www.mathnet.ru/eng/mt80
  • https://www.mathnet.ru/eng/mt/v7/i2/p126
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024