Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2004, Volume 7, Number 2, Pages 98–108 (Mi mt78)  

This article is cited in 10 scientific papers (total in 10 papers)

Dual Covers of the Greatest Element of the Rogers Semilattice

S. Yu. Podzorov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In the article, we study the algebraic structure of the Rogers semilattices of $\Sigma_n^0$-computable numberings for $n\ge2$. We prove that, under some sufficient conditions, the greatest element of each of these semilattices can be a limit element (i. e., cannot have dual covers).
Key words: numbering, reducibility of numberings, $\Sigma^0_n$-computable numbering, the Rogers semilattice, cover, complete numbering, weak reducibility.
Received: 22.04.2004
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: S. Yu. Podzorov, “Dual Covers of the Greatest Element of the Rogers Semilattice”, Mat. Tr., 7:2 (2004), 98–108; Siberian Adv. Math., 15:2 (2005), 104–114
Citation in format AMSBIB
\Bibitem{Pod04}
\by S.~Yu.~Podzorov
\paper Dual Covers of the~Greatest Element of the~Rogers Semilattice
\jour Mat. Tr.
\yr 2004
\vol 7
\issue 2
\pages 98--108
\mathnet{http://mi.mathnet.ru/mt78}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2124541}
\zmath{https://zbmath.org/?q=an:1095.03027}
\transl
\jour Siberian Adv. Math.
\yr 2005
\vol 15
\issue 2
\pages 104--114
Linking options:
  • https://www.mathnet.ru/eng/mt78
  • https://www.mathnet.ru/eng/mt/v7/i2/p98
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :134
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024