Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2004, Volume 7, Number 1, Pages 153–188 (Mi mt73)  

This article is cited in 6 scientific papers (total in 6 papers)

The Ćurgus Condition in Indefinite Sturm–Liouville Problems

A. I. Parfenov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: For a finite signed measure $\mu$ on $(-1,1)$ changing its sign at zero, we study the Riesz basis property in the space $L_{2,|\mu|}$ of generalized eigenfunctions of the spectral problem $-u''(x)dx=\lambda u(x)d\mu(x)$, $-1<x<1$, $u(-1)=u(1)=0$. Primarily, our approach is based on the Ćurgus criterion. We present a criterion for the basis property in the case of an odd measure and sufficient conditions (in terms of $\mu$) known so far for a measure absolutely continuous with respect to the Lebesgue measure whose support is the whole interval. We prove the Riesz basis property for a degenerate discrete measure of a special form and a new necessary condition for this property. For a dense embedding $V\subset H=H'$ of a reflexive Banach space $V$ into a Hilbert space $H$ and a symmetric unitary (in $H$) operator $J$, we consider the interpolation equality $\bigl(V,(JV)'\bigr)_{1/2,2}=H$ applicable to nonlinear evolutionary equations of mixed type. We also exhibit conditions ensuring this equality and generalizing sufficient conditions for the basis property.
Key words: indefinite spectral problem, Riesz basis, contraction operator, preservation of boundary values, holomorphic functional calculus, the Kato square root problem, mixed type equation.
Received: 06.03.2003
Bibliographic databases:
UDC: 517.927.25+517.982.224
Language: Russian
Citation: A. I. Parfenov, “The Ćurgus Condition in Indefinite Sturm–Liouville Problems”, Mat. Tr., 7:1 (2004), 153–188; Siberian Adv. Math., 15:2 (2005), 68–103
Citation in format AMSBIB
\Bibitem{Par04}
\by A.~I.~Parfenov
\paper The \'Curgus Condition in Indefinite Sturm--Liouville Problems
\jour Mat. Tr.
\yr 2004
\vol 7
\issue 1
\pages 153--188
\mathnet{http://mi.mathnet.ru/mt73}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068279}
\zmath{https://zbmath.org/?q=an:1089.34025}
\transl
\jour Siberian Adv. Math.
\yr 2005
\vol 15
\issue 2
\pages 68--103
Linking options:
  • https://www.mathnet.ru/eng/mt73
  • https://www.mathnet.ru/eng/mt/v7/i1/p153
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:472
    Full-text PDF :147
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024