Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2004, Volume 7, Number 1, Pages 91–152 (Mi mt72)  

This article is cited in 3 scientific papers (total in 3 papers)

On the Accuracy of Gaussian Approximation in Hilbert Space

S. V. Nagaeva, V. I. Chebotarevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Computer Centre Far-Eastern Branch of RAS
References:
Abstract: This article is a continuation of the authors' paper [1] with a new approach to studying the accuracy of order $O(1/n)$ of Gaussian approximation in Hilbert space. In contrast to [1], we now study a more general case of the class of sets on which the probability measures are compared, namely, the class of balls with arbitrary centers. The resultant bound depends on the thirteen greatest eigenvalues of the covariance operator $T$ in explicit form; moreover, this dependence is sharper as compared to the bound of [2].
Key words: Gaussian approximation in Hilbert space, eigenvalues of the covariance operator, discretization of a probability distribution, conditionally independent random variables.
Received: 10.06.2002
Bibliographic databases:
UDC: 519.214.4
Language: Russian
Citation: S. V. Nagaev, V. I. Chebotarev, “On the Accuracy of Gaussian Approximation in Hilbert Space”, Mat. Tr., 7:1 (2004), 91–152; Siberian Adv. Math., 15:1 (2005), 11–73
Citation in format AMSBIB
\Bibitem{NagChe04}
\by S.~V.~Nagaev, V.~I.~Chebotarev
\paper On the~Accuracy of~Gaussian Approximation in Hilbert Space
\jour Mat. Tr.
\yr 2004
\vol 7
\issue 1
\pages 91--152
\mathnet{http://mi.mathnet.ru/mt72}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068278}
\zmath{https://zbmath.org/?q=an:1125.60300}
\elib{https://elibrary.ru/item.asp?id=9530095}
\transl
\jour Siberian Adv. Math.
\yr 2005
\vol 15
\issue 1
\pages 11--73
Linking options:
  • https://www.mathnet.ru/eng/mt72
  • https://www.mathnet.ru/eng/mt/v7/i1/p91
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:432
    Full-text PDF :135
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024