Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2001, Volume 4, Number 1, Pages 111–121 (Mi mt7)  

This article is cited in 3 scientific papers (total in 3 papers)

On One Extremal Problem on the Euclidean Plane

Yu. V. Nikonorovaab

a Barnaul State Pedagogical University
b Rubtsovsk Industrial Intitute, Branch of Altai State Technical University
References:
Abstract: Given two intersecting congruent rectangles P1=ABCD and P2=EFGH in the Euclidean plane, let L1 be the length of the part of the boundary P1 which lies in the interior int(P2) of P2 and similarly let L2 be the length of the part of P2 which lies in the interior int(P1) of P1. The author solves J. W. Fickett's problem of validating the inequality 13L1L23L1.
Key words: convex body, Euclidean geometry, isoperimetric problem.
Received: 16.03.2000
Bibliographic databases:
UDC: 513
Language: Russian
Citation: Yu. V. Nikonorova, “On One Extremal Problem on the Euclidean Plane”, Mat. Tr., 4:1 (2001), 111–121; Siberian Adv. Math., 11:3 (2001), 49–59
Citation in format AMSBIB
\Bibitem{Nik01}
\by Yu.~V.~Nikonorova
\paper On One Extremal Problem on the~Euclidean Plane
\jour Mat. Tr.
\yr 2001
\vol 4
\issue 1
\pages 111--121
\mathnet{http://mi.mathnet.ru/mt7}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850150}
\zmath{https://zbmath.org/?q=an:0994.52008|0978.52002}
\transl
\jour Siberian Adv. Math.
\yr 2001
\vol 11
\issue 3
\pages 49--59
Linking options:
  • https://www.mathnet.ru/eng/mt7
  • https://www.mathnet.ru/eng/mt/v4/i1/p111
  • This publication is cited in the following 3 articles:
    1. Donnelly J., “on a Conjecture of Fickett”, Am. Math. Mon., 126:1 (2019), 78–80  crossref  mathscinet  zmath  isi  scopus
    2. N. V. Rasskazova, “Zadacha Dzh. V. Fike dlya ravnobedrennykh treugolnikov”, Vladikavk. matem. zhurn., 14:3 (2012), 74–86  mathnet
    3. Yu. G. Nikonorov, Yu. V. Nikonorova, “Ob odnom podkhode k resheniyu zadachi Dzh. V. Fike o peresekayuschikhsya kongruentnykh mnogougolnikakh”, Vladikavk. matem. zhurn., 13:4 (2011), 52–59  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :126
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025