Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2023, Volume 26, Number 1, Pages 41–46
DOI: https://doi.org/10.33048/mattrudy.2023.26.103
(Mi mt688)
 

An extension of a theorem of Neumann

V. G. Durnev, A. I. Zetkina

Demidov Yaroslavl State University, Yaroslavl, 150003, Russia
References:
Abstract: In the present article, we prove that every countable infinite group $G$ is embeddable into a countable infinite simple group $\overline{G}$ such that every equation of the form
$$w(x_1,\dots,x_n)=g,$$
is solvable in $\overline{G}$, where $w$ is a nontrivial reduced group word in variables $x_1,\dots,x_n$, and $g\in G$.
Key words: equation in a group, simple group.
Funding agency Grant number
Russian Science Foundation 19-52-26006
The work was supported by the Russian Science Foundation (project No. 19-52-26006).
Received: 10.12.2022
Revised: 10.03.2023
Accepted: 17.05.2023
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 3, Pages 200–203
DOI: https://doi.org/10.1134/S1055134423030045
Bibliographic databases:
Document Type: Article
UDC: 512+512.5+512.54
Language: Russian
Citation: V. G. Durnev, A. I. Zetkina, “An extension of a theorem of Neumann”, Mat. Tr., 26:1 (2023), 41–46; Siberian Adv. Math., 33:3 (2023), 200–203
Citation in format AMSBIB
\Bibitem{DurZet23}
\by V.~G.~Durnev, A.~I.~Zetkina
\paper An extension of a theorem of Neumann
\jour Mat. Tr.
\yr 2023
\vol 26
\issue 1
\pages 41--46
\mathnet{http://mi.mathnet.ru/mt688}
\crossref{https://doi.org/10.33048/mattrudy.2023.26.103}
\elib{https://elibrary.ru/item.asp?id=54901439}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 3
\pages 200--203
\crossref{https://doi.org/10.1134/S1055134423030045}
Linking options:
  • https://www.mathnet.ru/eng/mt688
  • https://www.mathnet.ru/eng/mt/v26/i1/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024