Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2005, Volume 8, Number 2, Pages 199–206 (Mi mt67)  

On the Number of Hamiltonian Cycles in Hamiltonian Dense Graphs

E. A. Okolnishnikova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $G$ be a Hamiltonian graph with $n$ vertices and $Cn(n-1)/2$ edges, where $3/4<C\le 1$. We show that $G$ contains at least $(C_1n)^{C_2n}$ Hamiltonian cycles, where $C_1$ and $C_2$ are some constants depending on $C$, and prove an analog of Dirac's theorem for graphs with prescribed edges.
Key words: Hamiltonian graph, Hamiltonian cycle, Dirac's theorem.
Received: 11.01.2005
Bibliographic databases:
UDC: 519.175.3+519.174.2+519.714.4
Language: Russian
Citation: E. A. Okolnishnikova, “On the Number of Hamiltonian Cycles in Hamiltonian Dense Graphs”, Mat. Tr., 8:2 (2005), 199–206; Siberian Adv. Math., 16:4 (2006), 79–85
Citation in format AMSBIB
\Bibitem{Oko05}
\by E.~A.~Okolnishnikova
\paper On the~Number of Hamiltonian Cycles in Hamiltonian Dense Graphs
\jour Mat. Tr.
\yr 2005
\vol 8
\issue 2
\pages 199--206
\mathnet{http://mi.mathnet.ru/mt67}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2197731}
\transl
\jour Siberian Adv. Math.
\yr 2006
\vol 16
\issue 4
\pages 79--85
Linking options:
  • https://www.mathnet.ru/eng/mt67
  • https://www.mathnet.ru/eng/mt/v8/i2/p199
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:722
    Full-text PDF :1093
    References:32
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024