Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2022, Volume 25, Number 2, Pages 88–106
DOI: https://doi.org/10.33048/mattrudy.2022.25.203
(Mi mt669)
 

Determination of a non-stationary adsorption coefficient analytical in part of spatial variables

D. K. Durdieva, Zh. D. Totievabc

a Institute of Mathematics of the Academy of Sciences of Uzbekistan, Bukhara Division, Bukhara, 705018 Uzbekistan
b Southern Mathematical Institute of the Vladikavkaz Scientific Centre of the RAS, Vladikavkaz, 362025 Russia
c North-Caucasian Centre for Mathematical Research of the Vladikavkaz Scientific Centre of the RAS, Vladikavkaz, 363110 Russia
References:
Abstract: The multidimensional adsorption coefficient inverse problem is considered for a second order hyperbolic equation. It is supposed that this coefficient is continuous with respect to the variables $t$, $x$ and analytic in the other spatial variables. For solving this equation, the scale method of Banach spaces of analytic functions is applied. The problem are reduced to a system of nonlinear Volterra integral equations and the local existence, global uniqueness, stability estimates are established.
Key words: inverse problem, fundamental solution, local solvability, Banach space, equivalent norm.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-896
The study was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-02-2022-896).
Received: 24.03.2022
Revised: 25.08.2022
Accepted: 02.11.2022
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 1, Pages 1–14
DOI: https://doi.org/10.1134/S1055134423010017
Document Type: Article
UDC: 517.958
Language: Russian
Citation: D. K. Durdiev, Zh. D. Totieva, “Determination of a non-stationary adsorption coefficient analytical in part of spatial variables”, Mat. Tr., 25:2 (2022), 88–106; Siberian Adv. Math., 33:1 (2023), 1–14
Citation in format AMSBIB
\Bibitem{DurTot22}
\by D.~K.~Durdiev, Zh.~D.~Totieva
\paper Determination of a non-stationary adsorption coefficient analytical in part of spatial variables
\jour Mat. Tr.
\yr 2022
\vol 25
\issue 2
\pages 88--106
\mathnet{http://mi.mathnet.ru/mt669}
\crossref{https://doi.org/10.33048/mattrudy.2022.25.203}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 1
\pages 1--14
\crossref{https://doi.org/10.1134/S1055134423010017}
Linking options:
  • https://www.mathnet.ru/eng/mt669
  • https://www.mathnet.ru/eng/mt/v25/i2/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024