Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2021, Volume 24, Number 2, Pages 81–104
DOI: https://doi.org/10.33048/mattrudy.2021.24.206
(Mi mt652)
 

This article is cited in 2 scientific papers (total in 2 papers)

Multiply transitive Lie group of transformations as a physical structure

V. A. Kyrov

Gorno-Altaisk State University
Full-text PDF (266 kB) Citations (2)
References:
Abstract: We establish a connection between physical structures and Lie groups and prove that the physical structure of rank ($n+1,2$), $n\in\mathbb{N}$, on a smooth manifold is isotopic to an almost $n$-transitive Lie group of transformations. Afterwards, we prove that an almost $n$-transitive Lie group of transformations is isotopic to a physical structure of rank ($n+1,2$).
Key words: physical structure, $n$-transitive Lie group of transformations.
Received: 24.12.2020
Revised: 26.03.2021
Accepted: 31.03.2021
Document Type: Article
UDC: 512.816
Language: Russian
Citation: V. A. Kyrov, “Multiply transitive Lie group of transformations as a physical structure”, Mat. Tr., 24:2 (2021), 81–104
Citation in format AMSBIB
\Bibitem{Kyr21}
\by V.~A.~Kyrov
\paper Multiply transitive Lie group of transformations as a~physical structure
\jour Mat. Tr.
\yr 2021
\vol 24
\issue 2
\pages 81--104
\mathnet{http://mi.mathnet.ru/mt652}
\crossref{https://doi.org/10.33048/mattrudy.2021.24.206}
Linking options:
  • https://www.mathnet.ru/eng/mt652
  • https://www.mathnet.ru/eng/mt/v24/i2/p81
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :65
    References:60
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024