Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2005, Volume 8, Number 1, Pages 122–134 (Mi mt57)  

Behavior of Arithmetic Invariants for a Class of Elliptic Curves in Cyclotomic $\Gamma$-Extensions

I. S. Rakhimov

National University of Uzbekistan named after M. Ulugbek
References:
Abstract: We study the behavior of the main arithmetic invariants of elliptic curves with complex multiplication in cyclotomic $\Gamma$-extensions. We consider the curves of CM-type which are defined over the field of rational numbers and possess nondegenerate nonsupersingular reduction modulo a prime $p$, where $p\ne 2$.
Key words: elliptic curve, arithmetic invariants, $\Gamma$-extension, the Tate module.
Received: 08.07.2002
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: I. S. Rakhimov, “Behavior of Arithmetic Invariants for a Class of Elliptic Curves in Cyclotomic $\Gamma$-Extensions”, Mat. Tr., 8:1 (2005), 122–134
Citation in format AMSBIB
\Bibitem{Rak05}
\by I.~S.~Rakhimov
\paper Behavior of Arithmetic Invariants for a~Class of Elliptic Curves in Cyclotomic $\Gamma$-Extensions
\jour Mat. Tr.
\yr 2005
\vol 8
\issue 1
\pages 122--134
\mathnet{http://mi.mathnet.ru/mt57}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1955024}
\zmath{https://zbmath.org/?q=an:1077.11042}
\elib{https://elibrary.ru/item.asp?id=9535716}
Linking options:
  • https://www.mathnet.ru/eng/mt57
  • https://www.mathnet.ru/eng/mt/v8/i1/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :82
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024