Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2006, Volume 9, Number 2, Pages 172–190 (Mi mt52)  

This article is cited in 1 scientific paper (total in 1 paper)

Isomorphisms, Definable Relations, and Scott Families for Integral Domains and Commutative Semigroups

D. A. Tusupov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In the present article, we prove the following four assertions: (1) For every computable successor ordinal $\alpha$, there exists a $\Delta^0_\alpha$-categorical integral domain (commutative semigroup) which is not relatively $\Delta^0_\alpha$-categorical (i. e., no formally $\Sigma^0_\alpha$ Scott family exists for such a structure). (2) For every computable successor ordinal $\alpha$, there exists an intrinsically $\Sigma^0_\alpha$-relation on the universe of a computable integral domain (commutative semigroup) which is not a relatively intrinsically $\Sigma^0_\alpha$-relation. (3) For every computable successor ordinal $\alpha$ and finite $n$, there exists an integral domain (commutative semigroup) whose $\Delta^0_\alpha$-dimension is equal to $n$. (4) For every computable successor ordinal $\alpha$, there exists an integral domain (commutative semigroup) with presentations only in the degrees of sets $X$ such that $\Delta^0_\alpha(X)$ is not $\Delta^0_\alpha$. In particular, for every finite $n$, there exists an integral domain (commutative semigroup) with presentations only in the degrees that are not $n$-low.
Key words: computable structure, Scott family, definable relation, integral domain, semigroup.
Received: 06.03.2006
English version:
Siberian Advances in Mathematics, 2007, Volume 17, Issue 1, Pages 49–61
DOI: https://doi.org/10.3103/S1055134407010038
Bibliographic databases:
UDC: 510.53+512.53+512.55
Language: Russian
Citation: D. A. Tusupov, “Isomorphisms, Definable Relations, and Scott Families for Integral Domains and Commutative Semigroups”, Mat. Tr., 9:2 (2006), 172–190; Siberian Adv. Math., 17:1 (2007), 49–61
Citation in format AMSBIB
\Bibitem{Tus06}
\by D.~A.~Tusupov
\paper Isomorphisms, Definable Relations, and Scott Families for Integral Domains and Commutative Semigroups
\jour Mat. Tr.
\yr 2006
\vol 9
\issue 2
\pages 172--190
\mathnet{http://mi.mathnet.ru/mt52}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2301604}
\elib{https://elibrary.ru/item.asp?id=9530051}
\transl
\jour Siberian Adv. Math.
\yr 2007
\vol 17
\issue 1
\pages 49--61
\crossref{https://doi.org/10.3103/S1055134407010038}
Linking options:
  • https://www.mathnet.ru/eng/mt52
  • https://www.mathnet.ru/eng/mt/v9/i2/p172
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :121
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024