Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2006, Volume 9, Number 1, Pages 101–116 (Mi mt40)  

This article is cited in 1 scientific paper (total in 1 paper)

Seven-Dimensional Homogeneous Einstein Manifolds\break of Negative Sectional Curvature

E. V. Nikitenko

Rubtsovsk Industrial Intitute, Branch of Altai State Technical University
References:
Abstract: In this article, we classify the seven-dimensional homogeneous Einstein manifolds of negative sectional curvature.
Key words: Riemannian manifold, sectional curvature, solvmanifold, homogeneous space, Einstein metric.
Received: 06.05.2005
Bibliographic databases:
UDC: 514.765
Language: Russian
Citation: E. V. Nikitenko, “Seven-Dimensional Homogeneous Einstein Manifolds\break of Negative Sectional Curvature”, Mat. Tr., 9:1 (2006), 101–116; Siberian Adv. Math., 16:3 (2006), 99–114
Citation in format AMSBIB
\Bibitem{Nik06}
\by E.~V.~Nikitenko
\paper Seven-Dimensional Homogeneous Einstein Manifolds\break of Negative Sectional Curvature
\jour Mat. Tr.
\yr 2006
\vol 9
\issue 1
\pages 101--116
\mathnet{http://mi.mathnet.ru/mt40}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251332}
\elib{https://elibrary.ru/item.asp?id=9529734}
\transl
\jour Siberian Adv. Math.
\yr 2006
\vol 16
\issue 3
\pages 99--114
Linking options:
  • https://www.mathnet.ru/eng/mt40
  • https://www.mathnet.ru/eng/mt/v9/i1/p101
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :114
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024