Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2001, Volume 4, Number 1, Pages 36–67 (Mi mt4)  

Study of the Range of Sums of a Vector Series by Multiplying the Rearrangements of a Series by Real Numbers

E. G. Lazareva

Tomsk State University
References:
Abstract: In this article we consider a new notion connected with the problem of the range of sums of a series in an infinite-dimensional space, multiplication of a rearrangement of a series by a real number. We distinguish some set of rearrangements that admit multiplication by integers. If the sum of a series disturbs after applying one of these rearrangements then the range of sums is unbounded and we can indicate some elements in it. For some subset of rearrangements in this set we prove the impossibility of multiplying a rearrangement by nonintegral numbers.
Key words: vector series, rearrangement of a series, multiplication of a rearrangement by a number, range of sums of a series.
Received: 05.09.2000
Bibliographic databases:
UDC: 517.982
Language: Russian
Citation: E. G. Lazareva, “Study of the Range of Sums of a Vector Series by Multiplying the Rearrangements of a Series by Real Numbers”, Mat. Tr., 4:1 (2001), 36–67; Siberian Adv. Math., 11:4 (2001), 68–97
Citation in format AMSBIB
\Bibitem{Laz01}
\by E.~G.~Lazareva
\paper Study of the~Range of Sums of a~Vector Series by Multiplying the~Rearrangements of a~Series by Real Numbers
\jour Mat. Tr.
\yr 2001
\vol 4
\issue 1
\pages 36--67
\mathnet{http://mi.mathnet.ru/mt4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850147}
\zmath{https://zbmath.org/?q=an:1051.46006|0986.46005}
\elib{https://elibrary.ru/item.asp?id=9532561}
\transl
\jour Siberian Adv. Math.
\yr 2001
\vol 11
\issue 4
\pages 68--97
Linking options:
  • https://www.mathnet.ru/eng/mt4
  • https://www.mathnet.ru/eng/mt/v4/i1/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024