Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2006, Volume 9, Number 1, Pages 21–33 (Mi mt37)  

This article is cited in 2 scientific papers (total in 2 papers)

The Banach–Steinhaus Uniform Boundedness Principle for Operators in Banach–Kantorovich Spaces over $L^0$

I. G. Ganieva, K. K. Kudaibergenovb

a Tashkent Temir YO'L Muxandislari Instituti
b Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
References:
Abstract: We consider a vector-valued version of the Banach–Steinhaus uniform boundedness principle for universally complete Banach–Kantorovich spaces over the ring of measurable functions. We prove that, if a family of bounded linear operators in a universally complete Banach–Kantorovich space is pointwise bounded, then it is uniformly bounded. We also present applications to weak convergence and weak boundedness in universally complete Banach–Kantorovich spaces.
Key words: Banach–Kantorovich space, measurable Banach bundle, vector-valued lifting, cyclically compact set.
Received: 07.12.2004
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: I. G. Ganiev, K. K. Kudaibergenov, “The Banach–Steinhaus Uniform Boundedness Principle for Operators in Banach–Kantorovich Spaces over $L^0$”, Mat. Tr., 9:1 (2006), 21–33; Siberian Adv. Math., 16:3 (2006), 42–53
Citation in format AMSBIB
\Bibitem{GanKud06}
\by I.~G.~Ganiev, K.~K.~Kudaibergenov
\paper The Banach--Steinhaus Uniform Boundedness Principle for Operators in Banach--Kantorovich Spaces over~$L^0$
\jour Mat. Tr.
\yr 2006
\vol 9
\issue 1
\pages 21--33
\mathnet{http://mi.mathnet.ru/mt37}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251329}
\transl
\jour Siberian Adv. Math.
\yr 2006
\vol 16
\issue 3
\pages 42--53
Linking options:
  • https://www.mathnet.ru/eng/mt37
  • https://www.mathnet.ru/eng/mt/v9/i1/p21
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:1275
    Full-text PDF :383
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024