Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2019, Volume 22, Number 2, Pages 157–174
DOI: https://doi.org/10.33048/mattrudy.2019.22.209
(Mi mt362)
 

This article is cited in 7 scientific papers (total in 7 papers)

Stability of linear delay differential equations arising in models of living systems

N. V. Pertsev

Sobolev Institute of Mathematics, Omsk Division, Omsk, 644099 Russia
Full-text PDF (241 kB) Citations (7)
References:
Abstract: We present the results of our study of the stability of the trivial solution to a system of linear delay differential equations decomposable into two subsystems. Each of the subsystems contains matrices of a special form. We establish conditions for the asymptotic stability and nonstability of the trivial solution on the basis of the properties of stable matrices and nondegenerate $M$-matrices. The stability of equilibria for mathematical models in immunology and epidemiology is investigated.
Key words: system of linear delay differential equations, stability of the trivial solution, nonnegative matrix, stable matrix, $M$-matrix, Waževski system of equations, mathematical models in immunology and epidemiology.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10086_мк
The work was supported by the Russian Foundation for Basic Research (grant 18-29-10086).
Received: 21.10.2018
Revised: 20.11.2018
Accepted: 27.02.2019
English version:
Siberian Advances in Mathematics, 2020, Volume 30, Issue 1, Pages 43–54
DOI: https://doi.org/10.3103/S1055134420010046
Bibliographic databases:
Document Type: Article
UDC: 517.929:57
Language: Russian
Citation: N. V. Pertsev, “Stability of linear delay differential equations arising in models of living systems”, Mat. Tr., 22:2 (2019), 157–174; Siberian Adv. Math., 30:1 (2020), 43–54
Citation in format AMSBIB
\Bibitem{Per19}
\by N.~V.~Pertsev
\paper Stability of~linear delay differential equations arising in~models of~living systems
\jour Mat. Tr.
\yr 2019
\vol 22
\issue 2
\pages 157--174
\mathnet{http://mi.mathnet.ru/mt362}
\crossref{https://doi.org/10.33048/mattrudy.2019.22.209}
\transl
\jour Siberian Adv. Math.
\yr 2020
\vol 30
\issue 1
\pages 43--54
\crossref{https://doi.org/10.3103/S1055134420010046}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081980295}
Linking options:
  • https://www.mathnet.ru/eng/mt362
  • https://www.mathnet.ru/eng/mt/v22/i2/p157
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024