Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2006, Volume 9, Number 1, Pages 3–20 (Mi mt36)  

This article is cited in 6 scientific papers (total in 6 papers)

Algebraic Properties of Covariant Derivative and Composition of Exponential Maps

A. V. Gavrilov

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We consider the problem of calculating the Taylor series for a function $h_x\colon T_xX\times T_xX\to T_xX$ defined by the composition of exponential maps, where $X$ is a smooth manifold with affine connection and $x\in X$. We show that the homogeneous summands of such a series can be derived by applying the Lie bracket and covariant derivative to the arguments of the function which are extended to vector fields.
Key words: affine connection, composition of exponential maps, nonassociative algebra.
Received: 11.05.2005
Bibliographic databases:
UDC: 514.764.3+512.554
Language: Russian
Citation: A. V. Gavrilov, “Algebraic Properties of Covariant Derivative and Composition of Exponential Maps”, Mat. Tr., 9:1 (2006), 3–20; Siberian Adv. Math., 16:3 (2006), 54–70
Citation in format AMSBIB
\Bibitem{Gav06}
\by A.~V.~Gavrilov
\paper Algebraic Properties of Covariant Derivative and Composition of Exponential Maps
\jour Mat. Tr.
\yr 2006
\vol 9
\issue 1
\pages 3--20
\mathnet{http://mi.mathnet.ru/mt36}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251328}
\transl
\jour Siberian Adv. Math.
\yr 2006
\vol 16
\issue 3
\pages 54--70
Linking options:
  • https://www.mathnet.ru/eng/mt36
  • https://www.mathnet.ru/eng/mt/v9/i1/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:796
    Full-text PDF :304
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024