Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2019, Volume 22, Number 2, Pages 21–33
DOI: https://doi.org/10.33048/mattrudy.2019.22.202
(Mi mt355)
 

This article is cited in 7 scientific papers (total in 7 papers)

On $\mathbb R$-linear problem and truncated Wiener–Hopf equation

A. F. Voronin

Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
Full-text PDF (192 kB) Citations (7)
References:
Abstract: We consider the $\mathbb R$-linear problem (also known as the Markushevich problem and the generalized Riemann boundary value problem) and the convolution integral equation of the second kind on a finite interval (also known as the truncated Wiener–Hopf equation). We find new conditions for correct solvability of the $\mathbb R$-linear problem and the truncated Wiener–Hopf equation.
Key words: $\mathbb R$-linear problem, Markushevich problem, Riemann boundary value problem, generalized Riemann boundary value problem, partial indices, convolution, truncated Wiener–Hopf equation, existence of a solution, stability, uniqueness.
Received: 23.01.2019
Revised: 06.02.2019
Accepted: 27.02.2019
English version:
Siberian Advances in Mathematics, 2020, Volume 30, Issue 2, Pages 143–151
DOI: https://doi.org/10.3103/S1055134420020066
Bibliographic databases:
Document Type: Article
UDC: 517.544+517.968
Language: Russian
Citation: A. F. Voronin, “On $\mathbb R$-linear problem and truncated Wiener–Hopf equation”, Mat. Tr., 22:2 (2019), 21–33; Siberian Adv. Math., 30:2 (2020), 143–151
Citation in format AMSBIB
\Bibitem{Vor19}
\by A.~F.~Voronin
\paper On $\mathbb R$-linear problem and truncated Wiener--Hopf equation
\jour Mat. Tr.
\yr 2019
\vol 22
\issue 2
\pages 21--33
\mathnet{http://mi.mathnet.ru/mt355}
\crossref{https://doi.org/10.33048/mattrudy.2019.22.202}
\transl
\jour Siberian Adv. Math.
\yr 2020
\vol 30
\issue 2
\pages 143--151
\crossref{https://doi.org/10.3103/S1055134420020066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086236051}
Linking options:
  • https://www.mathnet.ru/eng/mt355
  • https://www.mathnet.ru/eng/mt/v22/i2/p21
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :136
    References:35
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024