|
A triple of infinite iterates of the functor of positively homogeneous functionals
G. F. Djabbarov Nizami Tashkent State Pedagogical University, Tashkent, Uzbekistan
Abstract:
The present article is devoted to the study of the space $OH(X)$ of all weakly additive order-preserving normalized positively homogeneous functionals on a metric compactum $X$. We prove the uniform metrizability of the functor $OH$ by means of the Kantorovich–Rubinshteĭn metric. We also show that the functor $OH_+$ is perfectly metrizable, where $$ OH_+(X)=\Big\{\mu\in OH(X): \big\vert\mu(\varphi) \big\vert\le\mu\big(|\varphi| \big), \varphi\in C(X) \Big\}. $$ Under natural assumptions on $X$, we show that the triple $$ \big(\mathcal{F}^\omega(X),\mathcal{F}^{++}(X),\mathcal{F}^+(X) \big) $$ is homeomorphic to $(Q,s,\mathrm{rint}\, Q)$, where $\mathcal{F}$ is a convex seminormal semimonadic subfunctor of $OH_+$.
Key words:
weakly additive functional, Kantorovich–Rubinshteĭn metric, seminormal functor, perfectly metrizable functor, convex functor.
Received: 02.03.2018 Revised: 25.04.2018 Accepted: 23.05.2018
Citation:
G. F. Djabbarov, “A triple of infinite iterates of the functor of positively homogeneous functionals”, Mat. Tr., 22:1 (2019), 101–118; Siberian Adv. Math., 29:3 (2019), 190–201
Linking options:
https://www.mathnet.ru/eng/mt349 https://www.mathnet.ru/eng/mt/v22/i1/p101
|
Statistics & downloads: |
Abstract page: | 254 | Full-text PDF : | 50 | References: | 47 | First page: | 10 |
|