Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2018, Volume 21, Number 2, Pages 150–162
DOI: https://doi.org/10.17377/mattrudy.2018.21.207
(Mi mt343)
 

Symmetrizations of distance functions and $f$-quasimetric spaces

A. V. Greshnovab

a Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
References:
Abstract: We prove theorems on the topological equivalence of distance functions on spaces with weak and reverse weak symmetries. We study the topology induced by a distance function $\rho$ under the condition of the existence of a lower symmetrization for $\rho$ by an $f$-quasimetric. For $(q_1,q_2)$-metric spaces $(X,\rho)$, we also study the properties of their symmetrizations $ \min\big\{\rho(x,y),\rho(y,x) \big\} $ and $\max\big\{\rho(x,y),\rho(y,x) \big\} $. The relationship between the extreme points of a $(q_1,q_2)$-quasimetric $\rho$ and its symmetrizations $ \min\!\big\{\rho(x,y),\rho(y,x)\hskip-1pt \big\} $ and $\max\big\{\rho(x,y),\rho(y,x) \big\} $.
Key words: distance function, $f$-quasimetric, $(q_1,q_2)$-quasimetric, symmetrization, extreme point.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.2 (проект № 0314-2016-0006)
The work was supported by the Program of Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences (Grant 1.1.2; Project 0314-2016-0006).
Received: 24.04.2017
English version:
Siberian Advances in Mathematics, 2019, Volume 29, Pages 202–209
DOI: https://doi.org/10.3103/S1055134419030052
Bibliographic databases:
Document Type: Article
UDC: 517.957:517.548
Language: Russian
Citation: A. V. Greshnov, “Symmetrizations of distance functions and $f$-quasimetric spaces”, Mat. Tr., 21:2 (2018), 150–162; Siberian Adv. Math., 29 (2019), 202–209
Citation in format AMSBIB
\Bibitem{Gre18}
\by A.~V.~Greshnov
\paper Symmetrizations of distance functions and $f$-quasimetric spaces
\jour Mat. Tr.
\yr 2018
\vol 21
\issue 2
\pages 150--162
\mathnet{http://mi.mathnet.ru/mt343}
\crossref{https://doi.org/10.17377/mattrudy.2018.21.207}
\transl
\jour Siberian Adv. Math.
\yr 2019
\vol 29
\pages 202--209
\crossref{https://doi.org/10.3103/S1055134419030052}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071469878}
Linking options:
  • https://www.mathnet.ru/eng/mt343
  • https://www.mathnet.ru/eng/mt/v21/i2/p150
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :59
    References:27
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024