Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2018, Volume 21, Number 1, Pages 155–192
DOI: https://doi.org/10.17377/mattrudy.2018.21.107
(Mi mt335)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Riemann-Hilbert problem for the Moisil–Teodorescu system

A. N. Polkovnikova, N. Tarkhanovb

a Siberian Federal University, Institute of Mathematics and Computer Science, Krasnoyarsk, 660041 Russia
b Institute of Mathematics, University of Potsdam, Potsdam, 14476 Germany
Full-text PDF (374 kB) Citations (3)
References:
Abstract: In a bounded domain with smooth boundary in $\mathbb{R}^3$ we consider the stationary Maxwell equations for a function $u$ with values in $\mathbb{R}^3$ subject to a nonhomogeneous condition $(u,v)_x = u_0$ on the boundary, where $v$ is a given vector field and $u_0$ a function on the boundary. We specify this problem within the framework of the Riemann–Hilbert boundary value problems for the Moisil–Teodorescu system. This latter is proved to satisfy the Shapiro–Lopatinskij condition if an only if the vector $v$ is at no point tangent to the boundary. The Riemann–Hilbert problem for the Moisil–Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro–Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.
Key words: Dirac operator, Riemann–Hilbert problem, Fredholm operators.
Received: 01.09.2017
English version:
Siberian Advances in Mathematics, 2018, Volume 28, Issue 3, Pages 207–232
DOI: https://doi.org/10.3103/S1055134418030057
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.98
Language: Russian
Citation: A. N. Polkovnikov, N. Tarkhanov, “A Riemann-Hilbert problem for the Moisil–Teodorescu system”, Mat. Tr., 21:1 (2018), 155–192; Siberian Adv. Math., 28:3 (2018), 207–232
Citation in format AMSBIB
\Bibitem{PolTar18}
\by A.~N.~Polkovnikov, N.~Tarkhanov
\paper A Riemann-Hilbert problem for the Moisil--Teodorescu system
\jour Mat. Tr.
\yr 2018
\vol 21
\issue 1
\pages 155--192
\mathnet{http://mi.mathnet.ru/mt335}
\crossref{https://doi.org/10.17377/mattrudy.2018.21.107}
\elib{https://elibrary.ru/item.asp?id=34878269}
\transl
\jour Siberian Adv. Math.
\yr 2018
\vol 28
\issue 3
\pages 207--232
\crossref{https://doi.org/10.3103/S1055134418030057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052099869}
Linking options:
  • https://www.mathnet.ru/eng/mt335
  • https://www.mathnet.ru/eng/mt/v21/i1/p155
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :107
    References:41
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024