Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2017, Volume 20, Number 1, Pages 81–96
DOI: https://doi.org/10.17377/mattrudy.2017.20.105
(Mi mt315)
 

This article is cited in 6 scientific papers (total in 6 papers)

$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics

A. V. Greshnovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (253 kB) Citations (6)
References:
Abstract: We prove that the conditions of $(q_1,1)$- and $(1,q_2)$-quasimertricity of a distance function $\rho$ are sufficient for the existence of a quasimetric bi-Lipschitz equivalent to $\rho$. It follows that the Box-quasimetric defined with the use of basis vector fields of class $C^1$ whose commutators at most sum their degrees is bi-Lipschitz equivalent to some metric. On the other hand, we show that these conditions are not necessary. We prove the existence of $(q_1,q_2)$-quasimetrics for which there are no Lipschitz equivalent $1$-quasimetrics, which in particular implies another proof of a result by V. Schröder.
Key words: distance function, $(q_1,q_2)$-quasimetric, generalized triangle inequality, extreme point, chain approximation, Carnot–Carathéodory space.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00801_а
Received: 28.07.2016
English version:
Siberian Advances in Mathematics, 2017, Volume 27, Issue 4, Pages 253–262
DOI: https://doi.org/10.3103/S1055134417040034
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. V. Greshnov, “$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics”, Mat. Tr., 20:1 (2017), 81–96; Siberian Adv. Math., 27:4 (2017), 253–262
Citation in format AMSBIB
\Bibitem{Gre17}
\by A.~V.~Greshnov
\paper $(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics
\jour Mat. Tr.
\yr 2017
\vol 20
\issue 1
\pages 81--96
\mathnet{http://mi.mathnet.ru/mt315}
\crossref{https://doi.org/10.17377/mattrudy.2017.20.105}
\elib{https://elibrary.ru/item.asp?id=29145402}
\transl
\jour Siberian Adv. Math.
\yr 2017
\vol 27
\issue 4
\pages 253--262
\crossref{https://doi.org/10.3103/S1055134417040034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036551701}
Linking options:
  • https://www.mathnet.ru/eng/mt315
  • https://www.mathnet.ru/eng/mt/v20/i1/p81
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :178
    References:48
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024