Abstract:
We consider the question of the existence of the Dirichlet problem for second-order elliptic equations with spectral parameter and a nonlinearity discontinuous with respect to the phase variable. Here it is not assumed that the differential operator is formally selfadjoint. Using the method of upper and lower solutions, we establish results on the existence of nontrivial (positive and negative) solutions under positive values of the spectral parameter for the problems under study.
Key words:
nonselfadjoint differential operator, spectral parameter, discontinuous nonlinearity, method of upper and lower solutions, nontrivial solution.
Citation:
V. N. Pavlenko, D. K. Potapov, “Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity”, Mat. Tr., 19:1 (2016), 91–105; Siberian Adv. Math., 27:1 (2017), 16–25
\Bibitem{PavPot16}
\by V.~N.~Pavlenko, D.~K.~Potapov
\paper Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity
\jour Mat. Tr.
\yr 2016
\vol 19
\issue 1
\pages 91--105
\mathnet{http://mi.mathnet.ru/mt301}
\crossref{https://doi.org/10.17377/mattrudy.2016.19.104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588300}
\elib{https://elibrary.ru/item.asp?id=25963586}
\transl
\jour Siberian Adv. Math.
\yr 2017
\vol 27
\issue 1
\pages 16--25
\crossref{https://doi.org/10.3103/S1055134417010023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014007934}
Linking options:
https://www.mathnet.ru/eng/mt301
https://www.mathnet.ru/eng/mt/v19/i1/p91
This publication is cited in the following 7 articles:
O. V. Baskov, D. K. Potapov, “Existence of Solutions to the Non-Self-Adjoint Sturm–Liouville Problem with Discontinuous Nonlinearity”, Comput. Math. and Math. Phys., 64:6 (2024), 1254
V. N. Pavlenko, D. K. Potapov, “One class of quasilinear elliptic type equations with discontinuous nonlinearities”, Izv. Math., 86:6 (2022), 1162–1178
V. N. Pavlenko, D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Math., 85:2 (2021), 262–278
V. N. Pavlenko, D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Math., 84:3 (2020), 592–607
V. N. Pavlenko, D. K. Potapov, “On the Existence of Three Nontrivial Solutions
of a Resonance Elliptic Boundary Value Problem
with a Discontinuous Nonlinearity”, Diff Equat, 56:7 (2020), 831
V. N. Pavlenko, D. K. Potapov, “Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity”, Sb. Math., 210:7 (2019), 1043–1066
S. M. Voronin, S. F. Dolbeeva, O. N. Dementev, A. A. Ershov, M. G. Lepchinskii, S. V. Matveev, N. B. Medvedeva, D. K. Potapov, E. A. Rozhdestvenskaya, E. A. Sbrodova, I. M. Sokolinskaya, A. A. Solovev, V. I. Ukhobotov, V. E. Fedorov, “K 70-letiyu professora Vyacheslava Nikolaevicha Pavlenko”, Chelyab. fiz.-matem. zhurn., 2:4 (2017), 383–387