Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2007, Volume 10, Number 1, Pages 97–131 (Mi mt30)  

This article is cited in 10 scientific papers (total in 10 papers)

Continued Fractions, the Group GL(2,Z), and Pisot Numbers

V. N. Berestovskiia, Yu. G. Nikonorovb

a Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
b Rubtsovsk Industrial Intitute, Branch of Altai State Technical University
References:
Abstract: The properties of continued fractions, generalized golden sections, and generalized Fibonacci and Lucas numbers are proved on the ground of the properties of subsemigroups of the group of invertible integer matrices. Some properties of special recurrent sequences are studied. A new proof of the Pisot-Vijayaraghavan theorem is given. Some connections between continued fractions and Pisot numbers are considered. Some unsolved problems are stated.
Key words: continued fractions, Pisot numbers, recurrent sequences, generalized Fibonacci and Lucas numbers.
Received: 26.01.2006
English version:
Siberian Advances in Mathematics, 2007, Volume 17, Issue 4, Pages 268–290
DOI: https://doi.org/10.3103/S1055134407040025
Bibliographic databases:
UDC: 511.26
Language: Russian
Citation: V. N. Berestovskii, Yu. G. Nikonorov, “Continued Fractions, the Group GL(2,Z), and Pisot Numbers”, Mat. Tr., 10:1 (2007), 97–131; Siberian Adv. Math., 17:4 (2007), 268–290
Citation in format AMSBIB
\Bibitem{BerNik07}
\by V.~N.~Berestovskii, Yu.~G.~Nikonorov
\paper Continued Fractions, the Group $\mathrm{GL}(2,\mathbb Z)$, and Pisot Numbers
\jour Mat. Tr.
\yr 2007
\vol 10
\issue 1
\pages 97--131
\mathnet{http://mi.mathnet.ru/mt30}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2485367}
\elib{https://elibrary.ru/item.asp?id=9483455}
\transl
\jour Siberian Adv. Math.
\yr 2007
\vol 17
\issue 4
\pages 268--290
\crossref{https://doi.org/10.3103/S1055134407040025}
Linking options:
  • https://www.mathnet.ru/eng/mt30
  • https://www.mathnet.ru/eng/mt/v10/i1/p97
  • This publication is cited in the following 10 articles:
    1. S.L. Gefter, A.L. Piven', “Implicit Linear Nonhomogeneous Difference Equation over ℤ with a Random Right-Hand Side”, Z. mat. fiz. anal. geom., 18:1 (2022), 105  crossref
    2. S. L. Gefter, V. V. Martseniuk, A. B. Goncharuk, A. L. Piven', “Analogue of the Cramer Rule for an Implicit Linear Second Order Difference Equation Over the Ring of Integers”, J Math Sci, 244:4 (2020), 601  crossref
    3. V. V. MARTSENIUK, Sergey L. Gefter, A. L. Piven', Springer Proceedings in Mathematics & Statistics, 341, Progress on Difference Equations and Discrete Dynamical Systems, 2020, 311  crossref
    4. O. Piven, V. Martseniuk, S. Hefter, “INTEGER SOLUTIONS OF A SECOND ORDER IMPLICIT LINEAR DIFFERENCE EQUATION”, BMJ, 6:3-4 (2018), 40  crossref
    5. S.L. Gefter, A.B. Goncharuk, A.L. Piven', “Integer solutions for a vector implicit linear difference equation in ZN”, Dopov. Nac. akad. nauk Ukr., 2018, no. 11, 11  crossref
    6. N. M. Dobrovolskii, N. N. Dobrovolskii, D. K. Sobolev, V. N. Soboleva, “Klassifikatsiya chisto-veschestvennykh algebraicheskikh irratsionalnostei”, Chebyshevskii sb., 18:2 (2017), 98–128  mathnet  crossref  elib
    7. N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, N. N. Dobrovol'skii, “On Lagrange algorithm for reduced algebraic irrationalities”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2, 27–39  mathnet
    8. Nikolai M. Dobrovol'skii, Nikolai N. Dobrovolsky, Irina N. Balaba, Irina Yu. Rebrova, Dmitrii K. Sobolev, Valentina N. Soboleva, Studies in Systems, Decision and Control, 69, Advances in Dynamical Systems and Control, 2016, 81  crossref
    9. N. M. Dobrovol'skii, N. N. Dobrovol'skii, “About minimal polynomial residual fractions for algebraic irrationalities”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 165–180  mathnet  crossref  elib
    10. T. A. Kozlovskaya, “Konkho-spirali na poverkhnosti konusa”, Vestn. NGU. Ser. matem., mekh., inform., 11:2 (2011), 65–76  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:1102
    Full-text PDF :508
    References:124
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025