Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2015, Volume 18, Number 2, Pages 133–204
DOI: https://doi.org/10.17377/mattrudy.2015.18.208
(Mi mt297)
 

This article is cited in 3 scientific papers (total in 3 papers)

Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. II

N. Tarkhanova, A. A. Shlapunovb

a Universität Potsdam, Institut für Mathematik, Am Neuen Palais, 10, Potsdam, 14469 GERMANY
b Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
Full-text PDF (582 kB) Citations (3)
References:
Abstract: We consider a (generally, noncoercive) mixed boundary value problem in a bounded domain $\mathcal{D}$ of ${\mathbb{R}}^n$ for a second order elliptic differential operator $A (x,\partial)$. The differential operator is assumed to be of divergent form in $\mathcal{D}$ and the boundary operator $B (x,\partial)$ is of Robin type on $\partial \mathcal{D}$. The boundary of $\mathcal{D}$ is assumed to be a Lipschitz surface. Besides, we distinguish a closed subset $Y \subset \partial \mathcal{D}$ and control the growth of solutions near $Y$. We prove that the pair $(A,B)$ induces a Fredholm operator $L$ in suitable weighted spaces of Sobolev type, the weight function being a power of the distance to the singular set $Y$. Moreover, we prove the completeness of root functions related to $L$.
Key words: mixed problems, noncoercive boundary conditions, elliptic operators, root functions, weighted Sobolev spaces.
Received: 01.04.2014
English version:
Siberian Advances in Mathematics, 2016, Volume 26, Issue 4, Pages 247–293
DOI: https://doi.org/10.3103/S1055134416040027
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.98
Language: Russian
Citation: N. Tarkhanov, A. A. Shlapunov, “Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. II”, Mat. Tr., 18:2 (2015), 133–204; Siberian Adv. Math., 26:4 (2016), 247–293
Citation in format AMSBIB
\Bibitem{TarShl15}
\by N.~Tarkhanov, A.~A.~Shlapunov
\paper Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges.~II
\jour Mat. Tr.
\yr 2015
\vol 18
\issue 2
\pages 133--204
\mathnet{http://mi.mathnet.ru/mt297}
\crossref{https://doi.org/10.17377/mattrudy.2015.18.208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588295}
\elib{https://elibrary.ru/item.asp?id=24639787}
\transl
\jour Siberian Adv. Math.
\yr 2016
\vol 26
\issue 4
\pages 247--293
\crossref{https://doi.org/10.3103/S1055134416040027}
Linking options:
  • https://www.mathnet.ru/eng/mt297
  • https://www.mathnet.ru/eng/mt/v18/i2/p133
    Cycle of papers
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:401
    Full-text PDF :123
    References:55
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024