Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2015, Volume 18, Number 1, Pages 118–189
DOI: https://doi.org/10.17377/mattrudy.2015.18.106
(Mi mt288)
 

This article is cited in 7 scientific papers (total in 7 papers)

Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. I

N. Tarkhanova, A. A. Shlapunovb

a Universität Potsdam, Potsdam, Germany
b Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (568 kB) Citations (7)
References:
Abstract: We consider (in general noncoercive) mixed problems in a bounded domain $D$ in $\mathbb{R}^n$ for a second-order elliptic partial differential operator $A(x,\partial)$. It is assumed that the operator is written in divergent form in $D$, the boundary operator $B(x,\partial)$ is the restriction of a linear combination of the function and its derivatives to $\partial D$ and the boundary of $D$ is a Lipschitz surface. We separate a closed set $Y\subset\partial D$ and control the growth of solutions near $Y$. We prove that the pair $(A,B)$ induces a Fredholm operator $L$ in suitable weighted spaces of Sobolev type, where the weight is a power of the distance to the singular set $Y$. Finally, we prove the completeness of the root functions associated with $L$.
The article consists of two parts. The first part published in the present paper, is devoted to exposing the theory of the special weighted Sobolev–Slobodetskii spaces in Lipschitz domains. We obtain theorems on the properties of these spaces; namely, theorems on the interpolation of these spaces, embedding theorems, and theorems about traces. We also study the properties of the weighted spaces defined by some (in general) noncoercive forms.
Key words: mixed problem, noncoercive boundary condition, elliptic operator, root function, weighted Sobolev space.
Received: 01.04.2014
English version:
Siberian Advances in Mathematics, 2016, Volume 26, Issue 1, Pages 30–76
DOI: https://doi.org/10.3103/S105513441601003X
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.98
Language: Russian
Citation: N. Tarkhanov, A. A. Shlapunov, “Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. I”, Mat. Tr., 18:1 (2015), 118–189; Siberian Adv. Math., 26:1 (2016), 30–76
Citation in format AMSBIB
\Bibitem{TarShl15}
\by N.~Tarkhanov, A.~A.~Shlapunov
\paper Sturm--Liouville problems in weighted spaces in domains with nonsmooth edges. I
\jour Mat. Tr.
\yr 2015
\vol 18
\issue 1
\pages 118--189
\mathnet{http://mi.mathnet.ru/mt288}
\crossref{https://doi.org/10.17377/mattrudy.2015.18.106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408637}
\elib{https://elibrary.ru/item.asp?id=23419036}
\transl
\jour Siberian Adv. Math.
\yr 2016
\vol 26
\issue 1
\pages 30--76
\crossref{https://doi.org/10.3103/S105513441601003X}
Linking options:
  • https://www.mathnet.ru/eng/mt288
  • https://www.mathnet.ru/eng/mt/v18/i1/p118
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :93
    References:54
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024