Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2015, Volume 18, Number 1, Pages 48–97
DOI: https://doi.org/10.17377/mattrudy.2015.18.104
(Mi mt286)
 

This article is cited in 3 scientific papers (total in 4 papers)

Countable infinite existentially closed models of universally axiomatizable theories

A. T. Nurtazin

Al-Farabi Kazakh National University, Almaty, Kazakhstan
Full-text PDF (436 kB) Citations (4)
References:
Abstract: In the present article, we obtain a new criterion for a model of a universally axiomatizable theory to be existentially closed. The notion of a maximal existential type is used in the proof and for investigating properties of countable infinite existentially closed structures. The notions of a prime and a homogeneous model, which are classical for the general model theory, are introduced for such structures. We study universal theories with the joint embedding property admitting a single countable infinite existentially closed model. We also construct, for every natural $n$, an example of a complete inductive theory with a countable infinite family of countable infinite models such that $n$ of them are existentially closed and exactly two are homogeneous.
Key words: universal and existential formulas (sentences), existentially closed structure, elementarily closed structure, countable infinite structure, isomorphic embedding (extension), elementary embedding (extension).
Received: 14.02.2014
English version:
Siberian Advances in Mathematics, 2016, Volume 26, Issue 2, Pages 99–125
DOI: https://doi.org/10.3103/S1055134416020036
Bibliographic databases:
Document Type: Article
UDC: 510.67
Language: Russian
Citation: A. T. Nurtazin, “Countable infinite existentially closed models of universally axiomatizable theories”, Mat. Tr., 18:1 (2015), 48–97; Siberian Adv. Math., 26:2 (2016), 99–125
Citation in format AMSBIB
\Bibitem{Nur15}
\by A.~T.~Nurtazin
\paper Countable infinite existentially closed models of universally axiomatizable theories
\jour Mat. Tr.
\yr 2015
\vol 18
\issue 1
\pages 48--97
\mathnet{http://mi.mathnet.ru/mt286}
\crossref{https://doi.org/10.17377/mattrudy.2015.18.104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408635}
\elib{https://elibrary.ru/item.asp?id=23419034}
\transl
\jour Siberian Adv. Math.
\yr 2016
\vol 26
\issue 2
\pages 99--125
\crossref{https://doi.org/10.3103/S1055134416020036}
Linking options:
  • https://www.mathnet.ru/eng/mt286
  • https://www.mathnet.ru/eng/mt/v18/i1/p48
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :150
    References:46
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024