Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2015, Volume 18, Number 1, Pages 27–47
DOI: https://doi.org/10.17377/mattrudy.2015.18.103
(Mi mt285)
 

This article is cited in 2 scientific papers (total in 2 papers)

A “direct” method to prove the generalized Itô–Venttsel' formula for a generalized stochastic differential equation

E. V. Karachanskaya

Pacific National University, Khabarovsk, 680035, Russia
Full-text PDF (252 kB) Citations (2)
References:
Abstract: For the first time we present a complete proof (from the standpoint of stochastic analysis) of the generalized Itô–Venttsel' formula whose ideas were adduced in [8]. The proposed proof is an approach to construct the generalized Itô–Venttsel' formula based on the direct application of the generalized Itô formula and the theory of stochastic approximation in contrast to the proof presented in [17] and based on the method of the integral invariants of a stochastic differential equation.
Key words: Itô–Venttsel' formula, generalized Itô equation, Poisson measure, $\delta$-sequence, mean-square convergence.
Received: 30.04.2014
English version:
Siberian Advances in Mathematics, 2016, Volume 26, Issue 1, Pages 17–29
DOI: https://doi.org/10.3103/S1055134416010028
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: E. V. Karachanskaya, “A “direct” method to prove the generalized Itô–Venttsel' formula for a generalized stochastic differential equation”, Mat. Tr., 18:1 (2015), 27–47; Siberian Adv. Math., 26:1 (2016), 17–29
Citation in format AMSBIB
\Bibitem{Kar15}
\by E.~V.~Karachanskaya
\paper A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation
\jour Mat. Tr.
\yr 2015
\vol 18
\issue 1
\pages 27--47
\mathnet{http://mi.mathnet.ru/mt285}
\crossref{https://doi.org/10.17377/mattrudy.2015.18.103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408634}
\elib{https://elibrary.ru/item.asp?id=23419033}
\transl
\jour Siberian Adv. Math.
\yr 2016
\vol 26
\issue 1
\pages 17--29
\crossref{https://doi.org/10.3103/S1055134416010028}
Linking options:
  • https://www.mathnet.ru/eng/mt285
  • https://www.mathnet.ru/eng/mt/v18/i1/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìàòåìàòè÷åñêèå òðóäû Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :104
    References:49
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024