|
This article is cited in 2 scientific papers (total in 2 papers)
Convergence of cubature formulas of high trigonometric precision in multidimensional periodic Sobolev spaces
V. L. Vaskevichab a Novosibirsk State University, Novosibirsk, 630090 Russia
b Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
Abstract:
We establish convergence in a norm of cubature formulas of high trigonometric precision on multidimensional periodic Sobolev spaces including spaces of fractional smoothness. The main result is obtained under the conventional conditions on smoothness of the space of integrands and distribution of the nodes of the cubature formulas.
Key words:
cubature formula, formula of high trigonometric precision, error function, periodic Sobolev space, embedding functions and constants.
Received: 28.10.2014
Citation:
V. L. Vaskevich, “Convergence of cubature formulas of high trigonometric precision in multidimensional periodic Sobolev spaces”, Mat. Tr., 18:1 (2015), 3–14; Siberian Adv. Math., 25:4 (2015), 297–304
Linking options:
https://www.mathnet.ru/eng/mt283 https://www.mathnet.ru/eng/mt/v18/i1/p3
|
Statistics & downloads: |
Abstract page: | 323 | Full-text PDF : | 80 | References: | 67 | First page: | 9 |
|