Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2014, Volume 17, Number 2, Pages 3–22 (Mi mt273)  

This article is cited in 2 scientific papers (total in 2 papers)

On the spectrum of the three-particle Hamiltonian on a unidimensional lattice

N. M. Alieva, M. E. Muminovab

a Navoi Samarkand State University, Samarkand, Uzbekistan
b University Technology Malaysia (UTM), Faculty of Science, Scudai, Johor, Malaysia
Full-text PDF (257 kB) Citations (2)
References:
Abstract: On a unidimensional lattice, the Hamiltonian of a system of three arbitrary particles is considered (with dispersion relations), where the particles interact pairwise via zero-range (contact) attractive potentials. We prove that the discrete spectrum of the corresponding Schrödinger operator is finite for all values of the total quasimomentum if the masses of two particles are finite. We also prove that the discrete spectrum of the Schrödinger operator is infinite if the masses of two particles in a three-particle system are infinite.
Key words: three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, compact operator.
Received: 08.02.2013
English version:
Siberian Advances in Mathematics, 2015, Volume 25, Issue 3, Pages 155–168
DOI: https://doi.org/10.3103/S1055134415030013
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: N. M. Aliev, M. E. Muminov, “On the spectrum of the three-particle Hamiltonian on a unidimensional lattice”, Mat. Tr., 17:2 (2014), 3–22; Siberian Adv. Math., 25:3 (2015), 155–168
Citation in format AMSBIB
\Bibitem{AliMum14}
\by N.~M.~Aliev, M.~E.~Muminov
\paper On the spectrum of the three-particle Hamiltonian on a~unidimensional lattice
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 2
\pages 3--22
\mathnet{http://mi.mathnet.ru/mt273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3330048}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 3
\pages 155--168
\crossref{https://doi.org/10.3103/S1055134415030013}
Linking options:
  • https://www.mathnet.ru/eng/mt273
  • https://www.mathnet.ru/eng/mt/v17/i2/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :97
    References:67
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024