Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2013, Volume 16, Number 2, Pages 45–68 (Mi mt259)  

This article is cited in 1 scientific paper (total in 1 paper)

Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments

A. A. Borovkovab, A. A. Mogul'skiĭab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (288 kB) Citations (1)
References:
Abstract: We extend the large deviation principles for random walks and processes with independent increments to the case of conditional probabilities given that the position of the trajectory at the last time moment is localized in a neighborhood of some point. As a corollary, we obtain a moderately large deviation principle for empirical distributions (an analog of Sanov's theorem).
Key words: moderately large deviation principle, local moderately large deviation principle, conditional moderately large deviation principle.
Received: 05.04.2013
English version:
Siberian Advances in Mathematics, 2015, Volume 25, Issue 1, Pages 39–55
DOI: https://doi.org/10.3103/S1055134415010058
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skiǐ, “Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments”, Mat. Tr., 16:2 (2013), 45–68; Siberian Adv. Math., 25:1 (2015), 39–55
Citation in format AMSBIB
\Bibitem{BorMog13}
\by A.~A.~Borovkov, A.~A.~Mogul'ski{\v\i}
\paper Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments
\jour Mat. Tr.
\yr 2013
\vol 16
\issue 2
\pages 45--68
\mathnet{http://mi.mathnet.ru/mt259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184037}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 1
\pages 39--55
\crossref{https://doi.org/10.3103/S1055134415010058}
Linking options:
  • https://www.mathnet.ru/eng/mt259
  • https://www.mathnet.ru/eng/mt/v16/i2/p45
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:591
    Full-text PDF :109
    References:62
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024