Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2013, Volume 16, Number 2, Pages 28–44 (Mi mt258)  

This article is cited in 2 scientific papers (total in 2 papers)

Invariance principle for canonical $U$- and $V$-statistics based on dependent observations

I. S. Borisovab, V. A. Zhechevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (238 kB) Citations (2)
References:
Abstract: We prove the functional limit theorem, i.e., the invariance principle, for sequences of normalized $U$- and $V$-statistics of arbitrary orders with canonical kernels, defined on samples of growing size from a stationary sequence of random variables under the $\alpha$- or $\varphi$-mixing conditions. The corresponding limit stochastic processes are described as polynomial forms of a sequence of dependent Wiener processes with a known covariance.
Key words: $U$-statistic, $V$-statistic, invariance principle, dependent observations, $\alpha$-mixing, $\varphi$-mixing.
Received: 27.07.2013
English version:
Siberian Advances in Mathematics, 2015, Volume 25, Issue 1, Pages 21–32
DOI: https://doi.org/10.3103/S1055134415010034
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: I. S. Borisov, V. A. Zhechev, “Invariance principle for canonical $U$- and $V$-statistics based on dependent observations”, Mat. Tr., 16:2 (2013), 28–44; Siberian Adv. Math., 25:1 (2015), 21–32
Citation in format AMSBIB
\Bibitem{BorZhe13}
\by I.~S.~Borisov, V.~A.~Zhechev
\paper Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
\jour Mat. Tr.
\yr 2013
\vol 16
\issue 2
\pages 28--44
\mathnet{http://mi.mathnet.ru/mt258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184036}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 1
\pages 21--32
\crossref{https://doi.org/10.3103/S1055134415010034}
Linking options:
  • https://www.mathnet.ru/eng/mt258
  • https://www.mathnet.ru/eng/mt/v16/i2/p28
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :116
    References:89
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024