Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2013, Volume 16, Number 1, Pages 121–140 (Mi mt252)  

On the upper bound in the large deviation principle for sums of random vectors

A. A. Mogul'skiĭab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: We consider the random walk generated by a sequence of independent identically distributed random vectors. The known upper bound for normalized sums in the large deviation principle was established under the assumption that the Laplace–Stieltjes transform of the distribution of the walk jumps exists in a neighborhood of zero. In the present article, we prove that, for a two-dimensional random walk, this bound holds without any additional assumptions.
Key words: large deviation principle, upper bound in the large deviation principle, deviation function, Cramér's condition.
Received: 29.05.2012
English version:
Siberian Advances in Mathematics, 2014, Volume 24, Issue 2, Pages 140–152
DOI: https://doi.org/10.3103/S1055134414020047
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Mogul'skiǐ, “On the upper bound in the large deviation principle for sums of random vectors”, Mat. Tr., 16:1 (2013), 121–140; Siberian Adv. Math., 24:2 (2014), 140–152
Citation in format AMSBIB
\Bibitem{Mog13}
\by A.~A.~Mogul'ski{\v\i}
\paper On the upper bound in the large deviation principle for sums of random vectors
\jour Mat. Tr.
\yr 2013
\vol 16
\issue 1
\pages 121--140
\mathnet{http://mi.mathnet.ru/mt252}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3156676}
\elib{https://elibrary.ru/item.asp?id=19000375}
\transl
\jour Siberian Adv. Math.
\yr 2014
\vol 24
\issue 2
\pages 140--152
\crossref{https://doi.org/10.3103/S1055134414020047}
Linking options:
  • https://www.mathnet.ru/eng/mt252
  • https://www.mathnet.ru/eng/mt/v16/i1/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :99
    References:63
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024