Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2012, Volume 15, Number 2, Pages 72–88 (Mi mt239)  

This article is cited in 20 scientific papers (total in 20 papers)

Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$

A. V. Greshnovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: The article is devoted to the asymptotic properties of the vector fields $\widetilde X^g_i$, $i=1,\dots,N$, $\theta_g$-connected with $C^1$-smooth basis vector fields $\{X_i\}_{i=1,\dots,N}$ satisfying condition $(+\deg)$. We prove a theorem of Gromov on the homogeneous nilpotent approximation for vector fields of class $C^1$. Nontrivial examples are constructed of quasimetrics induced by vector fields $\{X_i\}_{i=1,\dots,N}$.
Key words: vector field, degree of a vector field, smoothed vector field, Cauchy problem, Arzelà –Ascoli Theorem, quasimetric, generalized triangle inequality.
Received: 11.01.2012
English version:
Siberian Advances in Mathematics, 2013, Volume 23, Issue 3, Pages 180–191
DOI: https://doi.org/10.3103/S1055134413030036
Bibliographic databases:
Document Type: Article
UDC: 514.763+512.812.4+517.911
Language: Russian
Citation: A. V. Greshnov, “Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$”, Mat. Tr., 15:2 (2012), 72–88; Siberian Adv. Math., 23:3 (2013), 180–191
Citation in format AMSBIB
\Bibitem{Gre12}
\by A.~V.~Greshnov
\paper Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class~$C^1$
\jour Mat. Tr.
\yr 2012
\vol 15
\issue 2
\pages 72--88
\mathnet{http://mi.mathnet.ru/mt239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074455}
\elib{https://elibrary.ru/item.asp?id=18076203}
\transl
\jour Siberian Adv. Math.
\yr 2013
\vol 23
\issue 3
\pages 180--191
\crossref{https://doi.org/10.3103/S1055134413030036}
Linking options:
  • https://www.mathnet.ru/eng/mt239
  • https://www.mathnet.ru/eng/mt/v15/i2/p72
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:457
    Full-text PDF :148
    References:67
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024