Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2012, Volume 15, Number 1, Pages 129–140 (Mi mt231)  

This article is cited in 1 scientific paper (total in 1 paper)

Lower bound states of one-particle Hamiltonians on an integer lattice

Z. E. Muminovab, U. N. Kulzhanova

a Samarkand State University, Samarkand, Uzbekistan
b Uzbekistan Academy of Sciences, Samarkand Branch, Samarkand, Uzbekistan
Full-text PDF (226 kB) Citations (1)
References:
Abstract: Under consideration is a Hamiltonian $H$ describing the motion of a quantum particle on a $d$-mentional lattice in an exterior field. It is proven that if $H$ has an eigenvalue at the lower bound of its spectrum then this eigenvalue is nondegenerate and the corresponding eigenfunction is strictly positive (thereby a lattice analog of the Perron–Frobenius theorem is proven).
Key words: spectral properties, one-particle Hamiltonian on a lattice, Birman–Schwinger principle, eigenvalue, strictly positive function.
Received: 16.12.2010
English version:
Siberian Advances in Mathematics, 2013, Volume 23, Issue 1, Pages 61–68
DOI: https://doi.org/10.3103/S1055134413010057
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: Z. E. Muminov, U. N. Kulzhanov, “Lower bound states of one-particle Hamiltonians on an integer lattice”, Mat. Tr., 15:1 (2012), 129–140; Siberian Adv. Math., 23:1 (2013), 61–68
Citation in format AMSBIB
\Bibitem{MumKul12}
\by Z.~E.~Muminov, U.~N.~Kulzhanov
\paper Lower bound states of one-particle Hamiltonians on an integer lattice
\jour Mat. Tr.
\yr 2012
\vol 15
\issue 1
\pages 129--140
\mathnet{http://mi.mathnet.ru/mt231}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2984680}
\elib{https://elibrary.ru/item.asp?id=17718102}
\transl
\jour Siberian Adv. Math.
\yr 2013
\vol 23
\issue 1
\pages 61--68
\crossref{https://doi.org/10.3103/S1055134413010057}
Linking options:
  • https://www.mathnet.ru/eng/mt231
  • https://www.mathnet.ru/eng/mt/v15/i1/p129
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :114
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024