Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2011, Volume 14, Number 2, Pages 147–172 (Mi mt219)  

This article is cited in 9 scientific papers (total in 9 papers)

On extensions of partial $n$-quasigroups of order 4

V. N. Potapovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (314 kB) Citations (9)
References:
Abstract: We prove that every collection of pairwise compatible (nowhere coinciding) $n$-ary quasigroups of order 4 can be extended to an $(n+1)$-ary quasigroup. In other words, every Latin $4\times\cdots\times4\times l$-parallelepiped, where $l=1,2,3$, can be extended to a Latin hypercube.
Key words: $n$-ary quasigroup, reducible $n$-quasigroup, semilinear $n$-quasigroup of order 4, Latin $n$-cube, MDS-code.
Received: 24.09.2010
English version:
Siberian Advances in Mathematics, 2012, Volume 22, Issue 2, Pages 135–151
DOI: https://doi.org/10.3103/S1055134412020058
Bibliographic databases:
Document Type: Article
UDC: 519.143
Language: Russian
Citation: V. N. Potapov, “On extensions of partial $n$-quasigroups of order 4”, Mat. Tr., 14:2 (2011), 147–172; Siberian Adv. Math., 22:2 (2012), 135–151
Citation in format AMSBIB
\Bibitem{Pot11}
\by V.~N.~Potapov
\paper On extensions of partial $n$-quasigroups of order~4
\jour Mat. Tr.
\yr 2011
\vol 14
\issue 2
\pages 147--172
\mathnet{http://mi.mathnet.ru/mt219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961772}
\transl
\jour Siberian Adv. Math.
\yr 2012
\vol 22
\issue 2
\pages 135--151
\crossref{https://doi.org/10.3103/S1055134412020058}
Linking options:
  • https://www.mathnet.ru/eng/mt219
  • https://www.mathnet.ru/eng/mt/v14/i2/p147
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025