Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2011, Volume 14, Number 2, Pages 28–72 (Mi mt215)  

This article is cited in 14 scientific papers (total in 14 papers)

Catalytic branching random walks in $\mathbb Z^d$ with branching at the origin

V. A. Vatutina, V. A. Topchiĭb

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science, Omsk, Russia
References:
Abstract: A time-continuous branching random walk on the lattice $\mathbb Z^d$, $d\ge1$, is considered when the particles may produce offspring at the origin only. We assume that the underlying Markov random walk is homogeneous and symmetric, the process is initiated at moment $t=0$ by a single particle located at the origin, and the average number of offspring produced at the origin is such that the corresponding branching random walk is critical. The asymptotic behavior of the survival probability of such a process at moment $t\to\infty$ and the presence of at least one particle at the origin is studied. In addition, we obtain the asymptotic expansions for the expectation of the number of particles at the origin and prove Yaglom-type conditional limit theorems for the number of particles located at the origin and beyond at moment $t$.
Key words: catalytic branching random walk, a homogeneous and symmetric time-continuous multidimensional Markov random walk, Bellman–Harris branching process with two types of particles, renewal theory, limit theorem.
Received: 27.04.2010
English version:
Siberian Advances in Mathematics, 2013, Volume 23, Issue 2, Pages 125–153
DOI: https://doi.org/10.3103/S1055134413020065
Bibliographic databases:
Document Type: Article
UDC: 519.218
Language: Russian
Citation: V. A. Vatutin, V. A. Topchiǐ, “Catalytic branching random walks in $\mathbb Z^d$ with branching at the origin”, Mat. Tr., 14:2 (2011), 28–72; Siberian Adv. Math., 23:2 (2013), 125–153
Citation in format AMSBIB
\Bibitem{VatTop11}
\by V.~A.~Vatutin, V.~A.~Topchi{\v\i}
\paper Catalytic branching random walks in~$\mathbb Z^d$ with branching at the origin
\jour Mat. Tr.
\yr 2011
\vol 14
\issue 2
\pages 28--72
\mathnet{http://mi.mathnet.ru/mt215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961768}
\elib{https://elibrary.ru/item.asp?id=17025629}
\transl
\jour Siberian Adv. Math.
\yr 2013
\vol 23
\issue 2
\pages 125--153
\crossref{https://doi.org/10.3103/S1055134413020065}
Linking options:
  • https://www.mathnet.ru/eng/mt215
  • https://www.mathnet.ru/eng/mt/v14/i2/p28
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :165
    References:81
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024