Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2011, Volume 14, Number 2, Pages 14–27 (Mi mt214)  

This article is cited in 3 scientific papers (total in 3 papers)

Extremal functions of cubature formulas on a multidimensional sphere and spherical splines

V. L. Vaskevich

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (214 kB) Citations (3)
References:
Abstract: We establish the general form of extremal cubature formulas on multidimensional spheres. The domains of definition for the cubature formulas under consideration are Sobolev-type spaces on the sphere. The smoothness of the class function under study may be fractional. We prove that, for a given set of nodes, there exists a one-to-one correspondence between the set of extremal functions of cubature formulas on the sphere and the set of natural spherical splines with zero spherical mean.
Key words: cubature formulas, error functionals, Sobolev spaces on a multidimensional sphere, extremal functions, multidimensional spherical splines.
Received: 22.03.2011
English version:
Siberian Advances in Mathematics, 2012, Volume 22, Issue 3, Pages 217–226
DOI: https://doi.org/10.3103/S1055134412030054
Bibliographic databases:
Document Type: Article
UDC: 519.644+517.518.8+517.518.855
Language: Russian
Citation: V. L. Vaskevich, “Extremal functions of cubature formulas on a multidimensional sphere and spherical splines”, Mat. Tr., 14:2 (2011), 14–27; Siberian Adv. Math., 22:3 (2012), 217–226
Citation in format AMSBIB
\Bibitem{Vas11}
\by V.~L.~Vaskevich
\paper Extremal functions of cubature formulas on a~multidimensional sphere and spherical splines
\jour Mat. Tr.
\yr 2011
\vol 14
\issue 2
\pages 14--27
\mathnet{http://mi.mathnet.ru/mt214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961767}
\transl
\jour Siberian Adv. Math.
\yr 2012
\vol 22
\issue 3
\pages 217--226
\crossref{https://doi.org/10.3103/S1055134412030054}
Linking options:
  • https://www.mathnet.ru/eng/mt214
  • https://www.mathnet.ru/eng/mt/v14/i2/p14
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :118
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024