|
This article is cited in 6 scientific papers (total in 6 papers)
On some nonlocal boundary value problems for evolution equations
M. V. Uvarova Ugra State University, Khanty-Mansiisk, Russia
Abstract:
In the Sobolev–Besov spaces, we examine the question on solvability of nonlocal boundary value problems for operator-differential equations of the form $u_t-Lu+\gamma u=f$, $u(0)=Bu+u_0$, where $B$ is a linear operator, $L$ is a positive operator, and $\gamma$ is a real parameter. Under certain conditions on the parameter $\gamma$ and the data, the existence and uniqueness theorems for solutions to this boundary value problem are proven. The results are applied to studying nonlocal boundary value problems for parabolic equations and systems.
Key words:
operator-differential equation, parabolic system of equations, nonlocal problem, Sobolev–Besov space.
Received: 07.05.2009
Citation:
M. V. Uvarova, “On some nonlocal boundary value problems for evolution equations”, Mat. Tr., 13:2 (2010), 179–207; Siberian Adv. Math., 21:3 (2011), 211–231
Linking options:
https://www.mathnet.ru/eng/mt203 https://www.mathnet.ru/eng/mt/v13/i2/p179
|
Statistics & downloads: |
Abstract page: | 403 | Full-text PDF : | 135 | References: | 55 | First page: | 8 |
|