Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2001, Volume 4, Number 1, Pages 18–24 (Mi mt2)  

Separable Conservativity

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We introduce separable conservativity, a natural property of independent Boolean families of valuation rings. For families with this property, the validity of the geometric local-global principle implies the validity of a stronger principle, the arithmetic local-global principle.
Key words: multi-valued field, local-global principle.
Received: 22.12.2000
Bibliographic databases:
UDC: 510.53
Language: Russian
Citation: Yu. L. Ershov, “Separable Conservativity”, Mat. Tr., 4:1 (2001), 18–24; Siberian Adv. Math., 11:4 (2001), 41–46
Citation in format AMSBIB
\Bibitem{Ers01}
\by Yu.~L.~Ershov
\paper Separable Conservativity
\jour Mat. Tr.
\yr 2001
\vol 4
\issue 1
\pages 18--24
\mathnet{http://mi.mathnet.ru/mt2}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850145}
\zmath{https://zbmath.org/?q=an:1047.12005}
\transl
\jour Siberian Adv. Math.
\yr 2001
\vol 11
\issue 4
\pages 41--46
Linking options:
  • https://www.mathnet.ru/eng/mt2
  • https://www.mathnet.ru/eng/mt/v4/i1/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :106
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024