Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2009, Volume 12, Number 2, Pages 3–40 (Mi mt179)  

This article is cited in 10 scientific papers (total in 10 papers)

The laplace operator on normal homogeneous Riemannian manifolds

V. N. Berestovskii, V. M. Svirkin

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science, Omsk, Russia
References:
Abstract: The article presents an information about the Laplace operator defined on the real-valued mappings of compact Riemannian manifolds, and its spectrum; some properties of the latter are studied. The relationship between the spectra of two Riemannian manifolds connected by a Riemannian submersion with totally geodesic fibers is established. We specify a method of calculating the spectrum of the Laplacian for simply connected simple compact Lie groups with biinvariant Riemannian metrics, by representations of their Lie algebras. As an illustration, the spectrum of the Laplacian on the group $\operatorname{SU}(2)$ is found.
Key words: Laplace operator spectrum Riemannian submersion, normal homogeneous Riemannian manifold, spherical function, character, group representation.
Received: 26.06.2008
English version:
Siberian Advances in Mathematics, 2010, Volume 20, Issue 4, Pages 231–255
DOI: https://doi.org/10.3103/S1055134410040012
Bibliographic databases:
UDC: 514.764.227+514.765+517.984.56
Language: Russian
Citation: V. N. Berestovskii, V. M. Svirkin, “The laplace operator on normal homogeneous Riemannian manifolds”, Mat. Tr., 12:2 (2009), 3–40; Siberian Adv. Math., 20:4 (2010), 231–255
Citation in format AMSBIB
\Bibitem{BerSvi09}
\by V.~N.~Berestovskii, V.~M.~Svirkin
\paper The laplace operator on normal homogeneous Riemannian manifolds
\jour Mat. Tr.
\yr 2009
\vol 12
\issue 2
\pages 3--40
\mathnet{http://mi.mathnet.ru/mt179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2599423}
\transl
\jour Siberian Adv. Math.
\yr 2010
\vol 20
\issue 4
\pages 231--255
\crossref{https://doi.org/10.3103/S1055134410040012}
Linking options:
  • https://www.mathnet.ru/eng/mt179
  • https://www.mathnet.ru/eng/mt/v12/i2/p3
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:731
    Full-text PDF :577
    References:77
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024