Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2000, Volume 3, Number 2, Pages 171–181 (Mi mt171)  

This article is cited in 1 scientific paper (total in 1 paper)

Classification for the Actions of a Compact Abelian Group on a Semifinite Real $W^*$-Algebra

A. A. Rakhimov

University of World Economy and Diplomacy of the Ministry of Foreign Affairs of the Republic of Uzbekistan
Full-text PDF (258 kB) Citations (1)
Abstract: In this article, we study the actions of groups on real von Neumann algebras. A complete classification is obtained for the actions of arbitrary finite groups on hyperfinite real factors of type II$_1$. Using Takesaki's theorem for real von Neumann algebras, we classify (up to conjugacy) the actions of compact abelian groups on hyperfinite real factor of type II$_\infty$ in terms of cocycle-conjugacy of dual actions.
Key words: real von Neumann algebra, action, dual action, stable conjugacy, cocycle-conjugacy.
Received: 07.05.1999
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: A. A. Rakhimov, “Classification for the Actions of a Compact Abelian Group on a Semifinite Real $W^*$-Algebra”, Mat. Tr., 3:2 (2000), 171–181; Siberian Adv. Math., 11:2 (2001), 83–93
Citation in format AMSBIB
\Bibitem{Rak00}
\by A.~A.~Rakhimov
\paper Classification for the~ Actions of a~Compact Abelian Group on a~Semifinite Real $W^*$-Algebra
\jour Mat. Tr.
\yr 2000
\vol 3
\issue 2
\pages 171--181
\mathnet{http://mi.mathnet.ru/mt171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1806287}
\zmath{https://zbmath.org/?q=an:1023.46075|1010.46065}
\transl
\jour Siberian Adv. Math.
\yr 2001
\vol 11
\issue 2
\pages 83--93
Linking options:
  • https://www.mathnet.ru/eng/mt171
  • https://www.mathnet.ru/eng/mt/v3/i2/p171
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024