Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2000, Volume 3, Number 1, Pages 144–196 (Mi mt163)  

This article is cited in 3 scientific papers (total in 3 papers)

Resolvent Estimates for Ordinary Differential Operators of Mixed Type

A. V. Chueshov

Novosibirsk State University
Full-text PDF (529 kB) Citations (3)
Abstract: In the present article, we consider the problem
\begin{equation} Hu+\lambda u=f(t), \quad t\in (0,1), \tag{1} \end{equation}
where $\lambda$ is a complex parameter and $H$ stands for an ordinary differential operator of order $l\ge 2$ defined by the differential expression
$$ Hu=k(t)u^{(l)}(t)+a(t)u^{(l-1)}(t)+\sum_{j=0}^{l-2}a_j(t)u^{(j)}(t), $$
with $u^{(j)}(t)=\frac{d^ju(t)}{dt^j}$, and the collection of boundary conditions
$$ l_1u=u^{(p)}(1)+\sum_{\nu=0}^{p-1}\alpha_{\nu}u^{(\nu)}(1)=0, \quad l_0u=u^{(q)}(0)+\sum_{\nu=0}^{q-1}\beta_{\nu}u^{(\nu)}(0)=0. $$
Using a priori bounds, we prove existence and uniqueness theorems of boundary value problems for linear ordinary differential equations and study dependence of solutions on a parameter. The peculiarity of the problem lies in the fact that the leading coefficient in the equation is of an arbitrary sign on the interval $(0,1)$.
Key words: degenerate ordinary differential operator of arbitrary order, resolvent estimate, resolvent set.
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: A. V. Chueshov, “Resolvent Estimates for Ordinary Differential Operators of Mixed Type”, Mat. Tr., 3:1 (2000), 144–196; Siberian Adv. Math., 10:4 (2000), 15–67
Citation in format AMSBIB
\Bibitem{Chu00}
\by A.~V.~Chueshov
\paper Resolvent Estimates for Ordinary Differential Operators of Mixed Type
\jour Mat. Tr.
\yr 2000
\vol 3
\issue 1
\pages 144--196
\mathnet{http://mi.mathnet.ru/mt163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1778760}
\zmath{https://zbmath.org/?q=an:0996.34009}
\transl
\jour Siberian Adv. Math.
\yr 2000
\vol 10
\issue 4
\pages 15--67
Linking options:
  • https://www.mathnet.ru/eng/mt163
  • https://www.mathnet.ru/eng/mt/v3/i1/p144
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024