Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2000, Volume 3, Number 1, Pages 48–118 (Mi mt161)  

This article is cited in 8 scientific papers (total in 8 papers)

Random Walks in the Positive Quadrant. II. Integral Theorem

A. A. Mogul'skiia, B. A. Rogozinb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
Full-text PDF (665 kB) Citations (8)
Abstract: In the article, we consider a two-dimensional random walk $S(n)=S(\gamma,n)$, $n=1,2,\dots$, generated by the sequence of sums $S(\gamma,n)=\gamma+\xi(2)+\dots+\xi(n)$ of independent random vectors $\gamma,\xi(2),\dots,\xi(n),\dots$, with initial random state $\gamma=S(\gamma,1)$; in addition, we assume that the vectors $\xi(i)$, $i=2,3,\dots$, have the same distribution $F$ that differs in general from the distribution ${}\,\overline{\!F}$ of the initial state $\gamma$. We study boundary functionals, in particular, the state of the random walk at the first exit time from the positive quadrant.
In Part II, we study large deviations for the state of a random walk at the first exit time from the positive quadrant.
Key words: boundary problem, large deviation, factorization identity, deviation function, second deviation function.
Received: 13.08.1996
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: A. A. Mogul'skii, B. A. Rogozin, “Random Walks in the Positive Quadrant. II. Integral Theorem”, Mat. Tr., 3:1 (2000), 48–118; Siberian Adv. Math., 10:2 (2000), 35–103
Citation in format AMSBIB
\Bibitem{MogRog00}
\by A.~A.~Mogul'skii, B.~A.~Rogozin
\paper Random Walks in the~Positive Quadrant.~II. Integral Theorem
\jour Mat. Tr.
\yr 2000
\vol 3
\issue 1
\pages 48--118
\mathnet{http://mi.mathnet.ru/mt161}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1778758}
\zmath{https://zbmath.org/?q=an:0971.60049|0959.60031}
\transl
\jour Siberian Adv. Math.
\yr 2000
\vol 10
\issue 2
\pages 35--103
Linking options:
  • https://www.mathnet.ru/eng/mt161
  • https://www.mathnet.ru/eng/mt/v3/i1/p48
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :106
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024