Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 1999, Volume 2, Number 2, Pages 148–213 (Mi mt158)  

This article is cited in 9 scientific papers (total in 9 papers)

Direct Problems and a One-dimensional Inverse Problem of Electroelasticity for “Slow” Waves

V. G. Yakhnoa, I. Z. Merazhovbc

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
c Siberian University of Consumer's Cooperation
Full-text PDF (634 kB) Citations (9)
Abstract: The emphasis is on the direct (initial-boundary value) problems with particular boundary conditions and the inverse problem connected with determining the elasticity moduli and piezoelectric modulus of an electroelastic medium with cubic structure on some information about solutions to the direct problems. The moduli are assumed to be functions of depth only. The basic results of the present article are existence and uniqueness theorems of the direct and inverse problems under consideration together with stability estimates for solutions to the inverse problem.
Key words: electromagneto-elasticity, electroelasticity, elasticity moduli, piezoelectric modulus, direct problem, inverse problem, integral Volterra equation of the second kind.
Received: 07.09.1998
Bibliographic databases:
UDC: 517.951
Language: Russian
Citation: V. G. Yakhno, I. Z. Merazhov, “Direct Problems and a One-dimensional Inverse Problem of Electroelasticity for “Slow” Waves”, Mat. Tr., 2:2 (1999), 148–213; Siberian Adv. Math., 10:1 (2000), 87–150
Citation in format AMSBIB
\Bibitem{YakMer99}
\by V.~G.~Yakhno, I.~Z.~Merazhov
\paper Direct Problems and a~One-dimensional Inverse Problem of Electroelasticity for ``Slow'' Waves
\jour Mat. Tr.
\yr 1999
\vol 2
\issue 2
\pages 148--213
\mathnet{http://mi.mathnet.ru/mt158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1767828}
\zmath{https://zbmath.org/?q=an:0936.78005}
\transl
\jour Siberian Adv. Math.
\yr 2000
\vol 10
\issue 1
\pages 87--150
Linking options:
  • https://www.mathnet.ru/eng/mt158
  • https://www.mathnet.ru/eng/mt/v2/i2/p148
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :153
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024