Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 1999, Volume 2, Number 2, Pages 98–106 (Mi mt155)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Geometry of Totally Geodesic Riemannian Foliations

A. Ya. Narmanov

Tashkent State University
Full-text PDF (238 kB) Citations (2)
Abstract: In the present article we study a totally geodesic Riemannian foliation $F$ on a complete Riemannian manifold. We introduce a metrical connection $\widetilde{\nabla}$ that is different from the Levi–Civita connection. The distribution defined by the foliation $F$ and its orthogonal complement are parallel. We also study an interrelation between the vertical-horizontal homotopy and the metrical connection $\widetilde{\nabla}$. In the article we prove that the complementary (by orthogonality) distribution to the foliation $F$ is completely integrable if and only if the connection $\widetilde{\nabla}$ coincides with the Levi–Civita connection.
Key words: fibering, foliation, connection, evolvent, holonomy.
Received: 22.09.1998
Bibliographic databases:
UDC: 513.8
Language: Russian
Citation: A. Ya. Narmanov, “On the Geometry of Totally Geodesic Riemannian Foliations”, Mat. Tr., 2:2 (1999), 98–106; Siberian Adv. Math., 10:2 (2000), 104–111
Citation in format AMSBIB
\Bibitem{Nar99}
\by A.~Ya.~Narmanov
\paper On the~Geometry of Totally Geodesic Riemannian Foliations
\jour Mat. Tr.
\yr 1999
\vol 2
\issue 2
\pages 98--106
\mathnet{http://mi.mathnet.ru/mt155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1767825}
\zmath{https://zbmath.org/?q=an:0966.53020}
\transl
\jour Siberian Adv. Math.
\yr 2000
\vol 10
\issue 2
\pages 104--111
Linking options:
  • https://www.mathnet.ru/eng/mt155
  • https://www.mathnet.ru/eng/mt/v2/i2/p98
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024